
An Evening with. . .
EM

A Tutorial by Dirk Hovy
USCÕs Information Sciences Institute

dirkh@isi.edu

October 20, 2012

The EM algorithm (Dempster/Laird/Rubin, 1977) is one of the most widely used un-
supervised learning methods in NLP. It is important to have a solid understanding of its
properties and limitations in order to use it well. However, it is quite complex and a bit
tricky, and can easily be confusing for the beginner. There are a lot of terms, a lot of
implementations, and a lot of Greek letters to add to the confusion. This tutorial tries
to avoid the confusion by providing the step-by-step implementation of a concrete case
(with pseudocode and a Python implementation), highlighting only the necessary terms
and providing laymanÕs explanations of the underlying concepts.

1 Introduction

Before we look at what EM is, letÕs look at some of the common misconceptions about EM, and clear
upwhat it is not: what it isnot

¥ a model (itÕs a way to optimize one)

¥ a silver bullet (you have to be careful what to use it for)

¥ magic (really, itÕs just code. . .)

So, after we got that out of the way, letÕs see what EM actually is. EM is a form ofunsupervised unsupervised
learninglearning. It is not so much an algorithm, but rather a class of algorithms that use a 2-step procedure

(E step, M step) to train agenerative model. Generative models are joint probabilities (P(x,y)) that generative
modelexplain how the data was, well, generated (discriminativemodels, on the other hand, are simply weight

vectors that explainP(x|y)). EM tries to Þnd the parameters of a model which best explain the observed
data. Or: "If only I knew X, I could estimate Y. If only I knew Y, I could estimate X." We will see this
sentence a couple of times.

Throughout the tutorial, there will be little questions to see whether you are still awake. You can just
ignore them and read on, or try to solve them and feel good when you look up the answer at the end.
DonÕt beat yourself up when you got one wrong, though!

1

Also, do not get scared by complicated-looking formulas. We will translate them into plain English,
and the mathematical notation will become just the shorthand it was meant to be.

2 Preliminaries

In order to understand EM, we need to look at probabilities and graphical models. If you are not quite
sure what they are, fear not, we will explain them in the next sections. If you are already familiar with
the concepts, you can skip ahead to Section 3.

2.1 Probabilities

We will be talking about probabilities a lot, so we will review some basics. If you want to get deeper
into it, look at the relevant sections in Manning/SchŸtze (2000) and Russell/Norvig (2003).

Since we do NLP, letÕs look at the probability of words. Say we have a corpus of 100 sentences,x is
"unsupervised" and occurs in 20 sentences, andy is "learning" and occurs in 50 sentences.

Probabilities are basically counts that have been normalized.P(x), or the probability of seeing a P(x)

sentence with "unsupervised", is simply the count of sentences with "unsupervised" (20) divided by
the number of all sentences in our corpus/text (100).

P(unsupervised) =
count(sentences w. ÓunsupervisedÓ)

number o f all sentences
=

20
100

=
1
5

= 0.2 (1)

P(x,y) is a joint probability , i.e., how likely is it that we seex andy together, that is the words in joint
probabilityone sentence ("unsupervised learning" or "learning unsupervised", or even separated by other words,

order does not matter in this case). Say we have 10 sentences that contain both words, then

P(unsupervised, learning) =
count(sentences w. ÓunsupervisedÓandÓlearningÓ)

number o f all sentences
(2)

=
10
100

=
1
10

= 0.1 (3)

P(y|x) is aconditional probability , i.e., how likely is it to seey after having seenx, or "learning" in conditional
probabilitya sentence that contains "unsupervised". We can compute this as

P(y|x) =
P(x,y)
P(x)

=
count(sentences w. ÓunsupervisedÓand ÓlearningÓ)

number o f all sentences
count(sentences w. ÓunsupervisedÓ)

number o f all sentences

(4)

=
count(sentences w. ÓunsupervisedÓandÓlearningÓ)

count(sentences w. ÓunsupervisedÓ)
(5)

=
10
20

=
1
2

= 0.5 (6)

Note that orderdoesmatter in this case!

QUESTION: What would be the corresponding probability formulation for seeing "unsu-
pervised" in a sentence that contains "learning"?1

2

2.1.1 Where Probabilities Come From

You might have wondered where the probabilities we are gonna use come from. That is a very good
question, and there are two answers. The good, scientiÞcally satisfying answer is Òdata". We can use
the statistics collected by statistical institutions (now you know what they are good for), or we can
get them by counting and dividing from (preferably large amounts of) data. How likely is ist that it is
sunny in LA? Get the weather data of the last 30 years, count the days markedsunnyand divide by the
total number of days. The larger your sample, the more accurate your probability.

The other, less satisfying answer is Òelaborated guessing". Some things cannot be measured, or there
is simply no data (some things are just too rare. The only exception to this rule is baseball. There are
statistics for everything in baseball). What is the probability of being eaten by a tiger in Montana?
Probably very small (luckily), but what number is Òvery small"? We can make up a number, but it
might not be accurate.

The good news is that we can use EM to make up numbers and then adjust them until our model
explains the data best.

2.2 Graphical Models

Graphical Models are a nice way of visualizing probabilistic models, and also to express the depen-
dencies that hold between the individual elements. There are several types of graphical models, but the
ones we are interested in (and the ones we mean when we use the term) areBayes NetsandHidden Bayes Nets

Hidden
Markov
Models

Markov Models (HMMs). Graphical models consist of two elements,nodes and arcs.

nodes and
arcs

The nodes arerandom variables. Random variables are events that have some probability, and come

random
variables

in different ßavors. If a random variable has exactly two values, like{ on,o f f} or { true, f alse} , they
arebinary (in the latter case boolean). If they have a list of values (something like{ red,green,blue}

binary

or { chocolate,vanilla,strawberry, pistacchio}), they arediscrete. If they have numbers as values,

discrete

they are calledcontinuous. The probabilities associated with each of the values of a random variable

continuous

sum up to 1.0, i.e., the values{ red,green,blue} for the variableCOLORcould be{ 0.2,0.5,0.3} or
{ 0.33,0.33,0.33} , but not{ 0.8,0.4,0.7} .

G W

T
T

W

L

W P(W)

sunny 0.95

rainy 0.05

T W P(T|W)

normal sunny 0.5

bad sunny 0.35

terrible sunny 0.15

normal rainy 0.1

bad rainy 0.6

terrible rainy 0.3

L T P(L|T)

true normal 0.1

false normal 0.9

true bad 0.85

false bad 0.15

true terrible 0.9

false terrible 0.1

Figure 1:A simple graphical model with three random variables

Arcs are the directed links between the random variables, and you can think of them as causal relations
(there are other kinds, but it is easiest this way). They denote what inßuence the parent has on the
child node. This inßuence is expressed by a conditional probability. Thus in a network like the one in
Figure 1, we can say how likely it is that trafÞc (T) is bad, given that the weather (W) raining. A node

3

X can have several parents, which means that its value is inßuenced by several factors (trafÞc could
also be inßuenced by a Lakers game,G). If there are no links between two variables, then they are
independent of one another, i.e., whether the Lakers play or not luckily has no inßuence on the weather
W (the examples in this section are largely inßuenced by Russell/Norvig 2003).

2.2.1 Bayes Nets

G W

T

TW L
W P(W)

sunny 0.95

rainy 0.05

T W P(T|W)

normal sunny 0.5

bad sunny 0.35

terrible sunny 0.15

normal rainy 0.1

bad rainy 0.6

terrible rainy 0.3

L T P(L|T)

true normal 0.1

false normal 0.9

true bad 0.85

false bad 0.15

true terrible 0.9

false terrible 0.1

Figure 2:A Bayes Net with three variables

If we combine several nodes in a network, we call it a Bayes Net. LetÕs look at a very simple example
(Figure 2), inspired by Russell/Norvig (2003). Say we have three random variables, namely the weather
(W), with values{ sunny, rainy} ; trafÞc (T), which can be{ normal,bad,terrible} ; and whether we are
late for a meeting (L : { true, f alse}).

QUESTION: What are the types of the random variablesW, T, andL?2

From pop culture we know that it never rains in southern California, and from our meterological data
(see section 2.1.1) we know thatnevermeans 5%. So the probabilities forW are(0.95,0.05). If we
talk about the probability of a speciÞc outcome of the variables values, we writeP(W = sunny) = 0.95
or shorterP(sunny) = 0.95.

If it rains, trafÞc tends to get worse, and if trafÞc is bad, we are more likely to be late for our meeting.
If it is sunny, the trafÞc behaves different than when it israiny, so we have to specify the probability of
each value ofT for each value ofW. We do that in a table, where each column is a value for a variable,
T andW. Notice that the rows with the same value forW have to sum up to 1.0. You can imagine that
each value for weather is a state you are in, and the different values forT are options you can choose
from. Some options are more likely than others, but all probability is distributed between them (thus
summing to 1.0). You cannot choose something that is not there.

Whether I am late for a meeting (L) in turn depends on the state of the trafÞc (T), so we have to
specify another table with probabilities for each value ofL given each value ofT. Again you can see
that with worse trafÞc, our chances of being late increase.

Using the Bayes Net, we can now compute how likely we are to be late if the weather is bad but
trafÞc is normal, and other interesting things.

4

2.2.2 Hidden Markov Models

G W

T

TW L
W P(W)

sunny 0.95

rainy 0.05

T W P(T|W)

normal sunny 0.5

bad sunny 0.35

terrible sunny 0.15

normal rainy 0.1

bad rainy 0.6

terrible rainy 0.3

L T P(L|T)

true normal 0.1

false normal 0.9

true bad 0.85

false bad 0.15

true terrible 0.9

false terrible 0.1

T

W

L

T

W

L

T

W

L

É

É

É

1

1

1

2

2

2

n

n

n

Figure 3:A Hidden Markov Model of the Bayes Net above

Things change over time, but they migh tbe connected. TomorrowÕs weather does not just happen, it
actually depends on the weather of today. If we want to capture this, we can include another kind of
conditional probabilities, namely the ones expressing how a random variable changes over time. This
is the Markov part of HMMs. To make things easier, we assume that each state depends only on the
previous one, not all previous states. This is one of the so-calledMarkov properties. In order to Markov

propertiesmake it ahiddenMarkov model, we assume that the random variable we are actually interested in is
unobservable, but related to something we can observe.

Using our example from above, we have the following scenario: one year from now, we want to get
the sequence of sunny and rainy days that occurred (see Figure 3). We do not remember the weather
(W is hidden), but we do have our diary, in which we noted for each day whether we were late or not
(L is our observed variable, and it is dependent onW). We just copy the Bayes net from above for
each day, and add the new transition probabilitiesP(Wt|Wt! 1) between each of the Bayes nets. The
probability means Òhow likely is it to be{ rainy,sunny} today if it was{ rainy,sunny} yesterday".

In this case, we do have another hidden variable,T, but it is not necessary for HMMs. The important
part is that whether I am late one day does not depend on whether I was late the day before, but on the
weather on that day. Also, the trafÞc of today is independent of yesterdayÕs trafÞc. This is why there
are no arcs between theT andL variables, only theW nodes. This is another Markov property, that the
observations (here,L) are independent of one another. We guesstimated the probabilitiesP(T|W) and
P(L|T) based on intuitions or data (we will later say, we initialized them), and we could now use EM
to adjust them to reßect observations, using our diary as data and reconstructing the weather one year
ago.

3 Example Uses of EM

LetÕs start with a practical NLP example of what EM is good for. Say you have a context free grammar
(CFG), and would like to attach probabilities to each rule likeP(S" NP VP|S) to say how likely it is
thatSgoes toNP VP(vs. thatSgoes toS CC S).

QUESTION: How do you get the probabilities?3

5

ThatÕs easy enough, but it presupposes that we do have some suitable treebank. What if we do not
have a treebank, only plain text? This case is far more common. . . No problem, if you just had some
rule probabilities, you could generate a treebank by applying the most likely rules to produce the text.

QUESTION: What would you use to do that?4

Oh wait, dangit! To get those rule probabilities, youÕd have to have a treebank to collect them from.
But thatÕs what we wanted in the Þrst place. This is a pretty circular problem! ÒIf only I knew the rule
probabilities, I could make a treebank from text. If only I had a treebank, I could compute the rule
probabilities. . . "

EM can help us solve this problem. But how?

If you know k-means clustering, you already know how EM works! If not, donÕt despair.k-means

Here is an example: We want to divide the green points in Figure 4 into a red and a blue cluster. If

Figure 4:k-means clustering. ModiÞed from Bishop 2006

only we knew the cluster centroids, we could assign the data points to the closest clusters. If only we
knew which clusters the data points belong to, we could compute their centroids. . . Sounds somehow
familiar? Again, we have a circular problem. And here is how we gonna solve it:

We start by randomly placing cluster centroids on the graph (a). Then, we assign each data point to
a cluster (b).

6

QUESTION: How do we assign the points to a cluster?5

Then, we compute the centers of those new clusters and move the centroids to that position (c).

Algorithm : KMEANS(k)

for eachc # k
do centroid[c] = random(x,y)

while not converged

do

!
""""""""""#

""""""""""$

comment:E step

for eachci # clusters
do ci = COMPUTECLUSTERMEMBERS(i)

comment:M step

for each f j # centroids
do f j = COMPUTECENTER(cj)

Figure 5:Pseudocode for thek-means algorithm, adapted from Manning/SchŸtze 2000

As we can see, we alternate between assigning the points to clusters and computing new centroids.
Once the centroids stop moving around, we are done.

EM works similarly, and in fact is a Òsoft" version ofk-means. Instead of assigning each point to
just one cluster (hard clustering), EM will attach a probability to the membership of a point in each
cluster (P(cluster|point)). A data point can thus belong to several clusters (though with different
probabilities).

Probably the most well-known NLP task for EM islabeling unannotated text. We want to Þndlabeling

argmax
t

P(t|w), i.e., given some wordsw, what is the best tag sequencet? Or: ÒIf only I knew the right

tag sequence, I could compute their probabilities. . . If only I knew the tag probabilities, I could tag
the words." This is going to be our running example, and I will uset for a tag sequence andw for a
word sequence. The subscripti denotes the position in the respective sequence (wi is theith word).

As mentioned in the Þrst section, there are several algorithms to do EM (especially the E step), and
the one we will be using is theForward-Backward (or Baum-Welch) algorithm for labeling (there areForward-

Backwardother algorithms for other tasks).

4 The Goal

What we want from EM is the modelparameters that best explain the observed data.If we plot howparameters

well a model conÞguration explains the data over all possible parameter conÞgurations, we get the
graph in Figure 6.

7

Sheet1

Page 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

configuration of model parameters

ho
w

 w
el

l d
oe

s
th

e
m

od
el

 e
xp

la
in

 th
e

da
ta

local maxima

global maximum

Figure 6:What we try to optimize with EM

The conÞguration we want is the one at the highest peak. As you can see, there are several smaller
peaks. These are local maxima (they are a bit of a hassle, but we come back to that later).

LetÕs Þrst look at how we get those parameters. There will be a few formulas involved, but
donÕt be intimidated, they are easier than they look.

Remember that EM models a joint probability distributionP(x,y). One can write that as

P(x,y) = P(y) $P(x|y) = P(x) $P(y|x) (7)

The last two parts are the same because we donÕt care about the order ofx andy. To see why that is

x y

Figure 7:Venn diagram forP(x,y)

so, look at the diagram in Figure 7.P(x,y) is the grey area. To get that, we can just look atx and the
part of it that overlaps withy. This isP(x) $P(y|x). You could call this veryx-centric. If you donÕt like

8

that, you can get the same result by looking aty and the part of it that overlaps withx. That would be
P(y) $P(x|y).

In our case, however, we donÕt want to modelxs andys, but the probability of a word and tag
sequence occurring together,P(w,t). So letÕs substitutex and y for w and t and see what we get.
Something like

P(w,t) = P(t) $P(w|t) = P(w) $P(t|w) (8)

This says that the probability of the word and tag sequence together (P(w,t)) is equal to the probability
of the tag sequenceP(t) times the probability that we generate the words from that tag sequence
(P(w|t)). It is also equal to the probability of seeing those words (P(w)) times the probability of
turning those words into that tag sequence (P(t|w)). Both are equivalent toP(w,t), and that fact will
come in handy.

What we want to maximize is the last part,P(t|w) (i.e., what is the best tag sequence for the sentence
we see), since we have the words and want to know the tags. LetÕs take the last two parts and move a
few things around to getP(t|w) alone.

QUESTION: How do we do that? DonÕt peak ahead...6

P(t) $P(w|t)
P(w)

= P(t|w) (9)

Ok, thatÕs something. Take a deep breath and make sure you followed this.

Since we observew (the sentence), we can say thatP(w) is 1.0. In that case we can forget
about that denominator! So what we want to optimize (P(t|w)) is simply

P(t|w) = P(t) $P(w|t) (10)

Much cleaner, hmm?
LetÕs look at thatP(t). The probability of seeing the whole tag sequencet1,t2, ..., tn (P(t)) is really

just the product of seeing each of the tags following another tag. We write that as

P(t) = P(t1) $P(t2|t1) $P(t3|t2) $... $P(tn|tn! 1) (11)

or for short

P(t) = P(t1) $
n

!
i= 2

P(ti |ti! 1) (12)

Ok, so we played with the formula, made it cleaner, and dissectedP(t). But how does that help us?
Good question.

9

We wanted to Þnd the parameters for our model, and now we have them:P(t) andP(w|t). So we
put it all together, and what we want to optimize is Þnally the product of our two parameters.

P(t|w) = P(t1) $P(w1|t1) $
n

!
i= 2

P(ti |ti! 1) $P(wi|ti) (13)

By the way: parameters come in two ßavors:free parameters(these are the ones we want EM tofree
parametersoptimize) andÞxed parameters(we already know these and donÕt want EM to change them). You can
Þxed
parameters

make all parameters free or just some!

QUESTION: What happened if you Þxed all parameters?7

5 Implementation

In order to compute the parameters, we have to develop a data structure that allows us to manipu-
late them. We will use a Hidden Markov Model to represent the model and lattice-based dynamic
programming to compute and manipulate the probabilities. The following sections walk through the
individual parts and explain them in detail using pseudocode. You can Þnd a Python implementation
(not optimized for performance) in the Appendix (page 23).

5.1 HMM as Lattice

W W W W

t t t t

Figure 8:The Hidden Markov Model of the tagging task

The idea of our HMM (see Figure 8): What we can see (the words) was generated by something we
cannot see (the tag sequence). This is ourgenerative story. Sounds strange? Just wait... generative

story

Tags are connected bytransition probabilities P(ti |ti! 1), and emit words withemission prob- transition
probabilities

emission
probabilities

abilities P(wi|ti). These look strangely familiar... We could also say ÒAssume the Þrst word was
generated by the Þrst tag, how likely is it the next word was generated by the next tag, and how likely
is it that that tag followed the Þrst?" This translates to a sequence of conditional probabilities that we
already know from earlier (arenÕt you glad now we went through all those equations?):

P(t|w) =
n

!
i= 1

P(ti |ti! 1) $P(wi|ti) (14)

10

Again, this just means Òthe most likely tag sequence given a sentence is computed by concatenating
the most likely tags that can emit those words".

QUESTION: Why do we needP(ti |ti! 1) in there? Why donÕt we just take the best tag for
each word (P(t|w)) and be done?8

We can model HMMs as a matrix/lattice (or automaton) of tags and words, as in Figure 9, bylattice

replacing each random variable in the HMM with all possible values and drawing all possible arcs
between them. This can be tricky, and translating from a graphical model to a lattice takes some
getting used to.

In this case, we want to label ÒMice like cheese", and have an alphabet of only two tags,N and
V. It is important to specify all the tags you want to use. We start from a designated start state and
from there choose one of the tags with the respective probabilityP(t). From each of those possible tag
states, we can emit a word with the respective probabilityP(w|t). Those are the horizontal lines in our
lattice. Then, we choose the next tag with some probabilityP(ti |ti! 1). Those are the crossing lines in
the lattice.

To visualize this, we list all tags as rows. If we have adictionary that tells us that some wordsdictionary

can only have certain tags, we simply set all otherP(w|t) for this word to 0 (here, we could set
(P(mice|verb) = 0) and omit the arcs. If we donÕt have a such a dictionary, we have to assume that all
words can be emitted by all tags and let EM Þgure it out.

START

mice like cheese

END

P(N|START)

P(V|START)

P(mice|N)

P(mice|V)

P(like|N)

P(like|V)

P(cheese|N)

P(cheese|V)

P(END|N)

P(N|N)

P(V|V)

P(N|N)

P(V|V)

P(N|V)

P(V|N)

P(N|V)

P(V|N)

P(END|V)

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

Figure 9:The lattice for the sentence "Mice like cheese" and two possible tags, N and V

Ultimately, we want to learn which tags follow one another, sayV usually comes afterN, and
which words have which tags, e.g.,like is most of the times a verb, never a noun. Only expressed as
probabilities: what isP(like|V)? So how do we assign those values? We reward good parameters, i.e.,
transitions that increaseP(sentence), and we decrease bad ones. As a Þrst step, instead of just taking
whole counts of how often we see a transition, we "weigh" them by how likely the resulting sentence
was (P(sentence)). This is calledfractional counts. fractional

counts

QUESTION: What do you think isP(sentence)?9

11

We could try to just generate all possible taggings of a sentence (see Figure 10) and count how often
we seeN following V and Òcheese" was tagged asN, and then sum them all up to getP(sentence). But
there is a problem...

A naive way
¥We just generate all possible taggings

(=paths) of a sentence and count how
often we see each transition

START END
P(N|START) P(mice|N) P(N|N) P(like|N) P(N|N) P(cheese|N) P(END|N)

START END
P(N|START) P(mice|N) P(N|N) P(like|N) P(V|N) P(cheese|V) P(END|V)

START END
P(N|START) P(mice|N) P(V|N) P(like|V) P(V|V) P(cheese|V) P(END|V)

START END
P(N|START) P(mice|N) P(V|N) P(like|V) P(N|V) P(cheese|N) P(END|N)

START END
P(V|START) P(mice|V) P(V|V) P(like|V) P(V|V) P(cheese|V) P(END|V)

START END
P(V|START) P(mice|V) P(V|V) P(like|V) P(N|V) P(cheese|N) P(END|N)

START END
P(V|START) P(mice|V) P(N|V) P(like|N) P(N|N) P(cheese|N) P(END|N)

START END
P(V|START) P(mice|V) P(N|V) P(like|N) P(V|N) P(cheese|V) P(END|V)

Figure 10:Naive listing of all possible tag sequences

Say each word has on avg. 2.5 tags, and a sentence has 17 words, like this one. ThatÕs 2.517, or
5,820,766 possible paths through that lattice. For just one sentence! Imagine a sentence with 50
words. . . Clearly, we cannot afford to do that. We will have to do something else. And that something
is dynamic programming, see Section 5.2. dynamic

programming

An aside: since we multiply a lot of transitions to get through the lattice, the numbers can
quickly become very small. To deal with this, you can use the logarithm of the probabilities.

The smaller a number gets, the larger its negative log will be. Since the range of probabilities is
between 0 and 1.0, this corresponds an interval between negative inÞnity and 0 in log world.

If you do use logarithms, all multiplications shown here become additions (which is slightly faster),
and all additions have to be log-additions, a special computation that unfortunately is relatively slow,
and works like this:

Algorithm : LOGADDITION(x,y)

m= min(x,y)
big = 1030

if y! x > log(big)
then return (y)
else ifx! y > log(big)
then return (x)
else return (m+ log(exp(x! m)+ exp(y! m)))

12

Figure 11:Adding logs, adapted from Manning/SchŸtze 2000

In the remainder of the paper, I use ÒnormalÓ probabilities (not logs) since it would clutter the code.

5.2 Dynamic Programming

Back to our question: we wanted to know whatP(like|V) is. This now turns into the question of how
likely it is that we end up at the node that hasP(like|V) as outgoing transition (in our example node
(2,3)). And once we took that transition, what is the probability from the node we reach (i.e.,(2,4))
to the end?

Since we have modeled the HMM as a lattice, we can use dynamic programming techniques. This
allows us to compute how likely it is to arrive at each node (with the Forward algorithm), and to get to
the end from there (with the Backward algorithm).

S this is where we use the Forward-Backward algorithm! It consists of two parts.

QUESTION: What are the names of those parts?10

We use Forward-Backward in order to efÞciently compute for each sentence how often we see each
transition and what the probability of that sentence is. We need both for the fractional counts. Forward-
Backward is the E step in our EM implementation: we compute the expected counts given the current
model parameters.

QUESTION: What is the equivalent in clustering?11

When you model the lattice, it is a good idea to use a matrix or some such data structure in your
implementation, so you can access the nodes directly.

The Forward Algorithm

In the forward pass, we compute a new lattice with the same dimensions as the original one, whichforward pass

contains for each node the sum of all possible paths that lead up to there (see Figure 13). These values
are also calledalphas. ! [i, j] denotes the probability of all paths up to node(i, j). ! [START] is always alphas

1.0. Each subsequent! is just the sum of all transitions arriving there, each multiplied by the! of the
node where it (the transition) originated.

! [END] is the sum of all paths through the lattice, which is equal toP(sentence). P(data) is the
sum of allP(sentence) in the data. In each iteration, just add up all the! [END] of the sentences.
Remember,P(data) has to increase with each iteration, or there is something wrong! EM guarantees
that the likelihood of the data increases at each iteration over the data. OutputtingP(data) is thus a
good way of debugging your code: if it does not increase, something went wrong. . .

13

Algorithm : FORWARD(instance)

comment:each word has substitution and transition probabilities and thus 2 nodes

comment: the length of the lattice is thus 2 * no of words in the instance

comment:populate Þrst column

for each j # tags

do
%

! [j,0] = P(tags[j]|%START%)
! [j,1] = ! [j,0] $P(word1|tags[j])

comment:walk the lattice

for i # (2, |words| ! 2, i + = 2)

do

!
""#

""$

for each j # tags

do

!
#

$

for eachk # tags
do

&
! [j, i]+ = P(tags[j]|tags[k]) $! [k, i ! 1]

! [j , i + 1] = ! [j, i] $P(words[i/ 2]|tags[j])

comment:compute! [END]

for j # tags
do ! [END]+ = ! [j, |words| ! 1] $P(%END%|tags[j])

Figure 12:Pseudocode for the Forward algorithm

The Backward Algorithm

Thebackward passis almost the same as the forward pass, just backwards (note how the direction ofbackward
passthe arrows is reversed in Figure 14). Again, we compute a new lattice, which contains for each node

the sum of all possible paths that lead from that node to the end. These values are calledbetas. " [i, j] betas

denotes the summed probability of all paths from node(i, j) to the end. This time, however, we start at
the end." [END] is always 1.0.

A useful property for debugging is the fact that" [START] = ! [END].

QUESTION: Why are they the same?12

14

START

mice like cheese

END

P(N|START)

P(V|START)

P(mice|N)

P(mice|V)

P(like|N)

P(like|V)

P(cheese|N)

P(cheese|V)

P(END|N)

P(N|N)

P(V|V)

P(N|N)

P(V|V)

P(N|V)

P(V|N)

P(N|V)

P(V|N)

P(END|V)

! 1,1 ! 1,2 ! 1,3 ! 1,4 ! 1,5 ! 1,6

! END

! 2,1 ! 2,2 ! 2,3 �2,4 �2,5 ! 2,6

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

! ST ART = 1 .0
É

! 1,3 = ! 1,2 ! P(N |N) + ! 2,2 ! P(N |V)

Figure 13:Computing the alphas in the Forward pass

START

mice like cheese

END

P(N|START)

P(V|START)

P(mice|N)

P(mice|V)

P(like|N)

P(like|V)

P(cheese|N)

P(cheese|V)

P(END|N)

P(N|N)

P(V|V)

P(N|N)

P(V|V)

P(N|V)

P(V|N)

P(N|V)

P(V|N)

P(END|V)

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

! 1,1

! 2,4

! ST ART ! END

! 1,2 ! 1,3 ! 1,4 ! 1,5 ! 1,6

! 2,6! 2,5! 2,3! 2,2! 2,1

Figure 14:Computing the betas in the Backward pass

15

Algorithm : BACKWARD(instance)

comment: each word has substitution and transition probabilities and thus 2 nodes

comment: the length of the lattice is thus 2 * no of words in the instance

comment:start at the end

for each j # tags

do
%

" [j,2$ |words|] = P(%END%|tags[j])
" [j,2$ |words| ! 1] = " [j,2$ |words|] $P(words[last]|tags[j])

for i # (2$ |words| ! 2, 0, i ! = 2)

do

!
""#

""$

for each j # tags

do

!
#

$

for eachk # tags
do " [j, i]+ = P(tags[k]|tags[j]) $" [k, i + 1]

" [j, i ! 1] = " [j, i] $P(words[i/ 2]|tags[j])

comment:optionally, one can compute" [END]. It should= ! [START]

for each j # range(noO f Tags)
do " [START]+ = " [j,0] $P(tags[j],%START%)

Figure 15:Pseudocode for the Backward algorithm

Collecting Fractional Counts

2,3 2,4
P(like |V)

! 2,3

! 2,3 ! P(like |V) ! " 2,4

! END
f racCount (like |V) =

! 2,4

Figure 16:Collecting fractional counts forP(like|V)

Once we have the alphas and betas, it is easy to compute for each transition how much it contributes
to P(sentence). So, once more, with conviction, how good isP(like|V)? Remember, we have to know
the likelihood of all possible paths arriving at node(2,3), and the probability Ð once we have taken the
transition Ð from(2,4) to the end. See Figure 16.

16

We used the forward algorithm to get the probability of arriving at node(2,3), and the backward
algorithm to compute how likely it is from node(2,4) to the end. We divide that by the likelihood of
the sentence (= ! [END]), et voila!

Algorithm : COLLECTCOUNTS()

comment: collect the fractional counts of all transition in the current example

for each i # tags

do

!
""""""""""""""""""#

""""""""""""""""""$

counts[tags[i],%START%]+ = (1.0$P(tags[i]|%START%) $" [i,0])/ ! [END]
counts[%END%,tags[i]]+ = (! [i,2$ |words|] $P(%END%|tags[i]) $1.0)/ ! [END]

for each j # words

do

!
""""""""""#

""""""""""$

comment:substitution counts

counts[words[j], tags[i]]+ = (! [i, j $2]$P(words[j]|tags[i]) $" [i, (j $2)+ 1])/ ! [END]

comment: transition counts

for eachk,# tags
do counts[tags[k],tags[i]]+ = (! [i, (j $2)+ 1]$P(tags[k]|tags[i]) $" [k, (j + 1) $2])/ >>

! [END]

Figure 17:Pseudocode for collecting fractional counts, ÕÈÕ denotes line breaks

The M Step

Computing alphas and betas and collecting the fractional counts for all free parameter transitions over
all examples is theE step. This, as the name suggests, is one half of Forward-Backward EM, and inE step

this case the bigger half. TheM step is comparatively trivial: after having gone through all the data, weM step

just normalize our fractional counts to get probabilities back (remember, probabilities are normalized
counts).

QUESTION: What do you need to compute conditional probabilities from counts?13

17

Algorithm : NORMALIZECOUNTS()

comment:normalize the fractional counts to get probabilities

comment:get total counts for each tag

for each i # tags

do

!
""""#

""""$

totalTransition[%START%]+ = counts[tags[i],%START%]
for each j # tags

do totalTransition[tags[i]]+ = counts[tags[j], tags[i]]
for each j # lemmas

do totalSubstitution[tags[i]]+ = counts[words[j], tags[i]]

comment:divide fractional counts by totals

for each i # tags

do

!
""""""#

""""""$

P(tag|%START%) = counts[tags[i],%START%]/ totalTransition[%START%]

for each j # tags
do P(tags[j]|tags[i]) = counts[tags[j], tags[i]]/ totalTransition[tags[i]]

for each j # words
do P(words[j]|tags[i]) = counts[words[j], tag[i]]/ totalSubstitution[tags[i]]

Figure 18:Pseudocode for normalizing counts to get the new parameters

5.3 Putting It All Together

If we put the E step and the M step together, we end up with the Forward-Backward EM algorithm!

Algorithm : FORWARD-BACKWARDEM()

while not converged

do

!
""""""""""#

""""""""""$

dataLikelihood= 0.0
for each instance# instances

do

!
""#

""$

FORWARD(instance)
BACKWARD(instance)
COLLECTCOUNTS()
dataLikelihood+ = ! [END]

NORMALIZECOUNTS()

Figure 19:Pseudocode for the Forward-Backward EM algorithm

18

The convergence criterion in this case is how much the data likelihoodP(data) has improved since
the last iteration. Once it starts to ßatten out, we can assume that we reached a maximum on our curve
and stop. It is also customary to set a maximum number of iterations (50) and stop even if EM has not
converged, to avoid overÞtting.

And thatÕs it. No magic, no silver bullets, just counting and normalizing. EM will adjust all
the free parameters to get the maximum data likelihood, and you can then use those probabilities to
label data using the Viterbi algorithm.

5.4 Example Run

START

can I can

END

P(V|START)

P(N|START)

P(can|V)

P(can|N)

P(I|V)

P(I|N)

P(can|V)

P(can|N)

P(END|V)

P(V|V)

P(N|N)

P(V|V)

P(N|N)

P(V|N)

P(N|V)

P(V|N)

P(N|V)

P(END|N)

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

0.125

0.125

0.25

0.25

0.25

0.25

0.5

0.5

0.5

0.5

1.0

1.0

1.0

0.125 1.0

0.125

0.6

0.4

0.3

0.2

0.36

0.14

0.18

0.07

0.171

0.079

0.085

0.04

Figure 20:! and" values for example run

If you want to check whether your implementation is working, here is a little toy example. LetÕs take
the tags ÒNÓ and ÒVÓ, and the wordscan andI and initialize our model with the following numbers
(this example is based on one used by Kevin Knight.)

Transitions:

P(V|V) = 0.6

P(N|V) = 0.4

P(V|N) = 0.9

P(N|N) = 0.1

P(V|START) = P(V) = 0.6

P(N|START) = P(N) = 0.4

Emissions:

P(can|V) = 0.5

19

P(I |V) = 0.5

P(can|N) = 0.5

P(I |N) = 0.5

As our only observed instance we use the sentence Òcan I canÓ. Your! s and" s after the Þrst
iteration should look like they do in Figure 20, where the! values for each node are shown on a white
background above the nodes, and" values with a grey background below the nodes. The arrows point
forward, but you can safely ignore them.

6 Finally...

CONGRATULATIONS! You have made it through. You now know EM and can go and try it out...

You do not have to be constrained to HMMs with hidden inputs, like we used here. Maybe
you do not have sequential data. In that case the HMM becomes a Bayesian network (which is an
HMM without the transitions).

Maybe you know both the inputs and outputs, but not the hidden variableX that connects them .
In that case you just want to know the conditional probabilitiesP(X|input) andP(out put|X) (in our
diary example above, you might also have the weather reports from that time and want to compute the
trafÞc probabilities). EM can help you in those cases, too.

If you want to apply EM to other problems, always start with the inputs and outputs. What are
the observed variables? Are the inputs hidden, or can they be observed, too? Is it a sequential model
or a network? Write down the joint probabilityP(x,y) and see how you can factor it. Drawing a
graphical model helps.

Think about how you can express the parameters as conditional probabilities. Do you need ad-
ditional (hidden) variables? What is your E step, what is your M step, what is the data you iterate
over? Once you have Þgured all this out, you can start to look into implementations. Do not focus on
implementation details like Forward-Backward in the beginning.

7 Troubleshooting

There are some problems that can arise, and it is good to be aware of them and know how to deal with,
or, better, avoid them.

Problem: What we maximize ÐP(data) Ð is often not what we want to evaluate (say, the tag-
ging accuracy as compared to gold data)

Solution: Design your model with this in mind and try to formulate the problem so that the two
criteria are similar. Keep test data around and evaluate your models on it.

Problem: Local maxima. EM improvesP(data) at each iteration, but can get stuck in localLocal
maximamaxima. Remember the graph from section 4: there are many suboptimal parameter conÞgurations at

which EM stops because it can not improve from there. The result is not the best model, though.

20

Solution: Restart EM 50 times or more with random initializations, and remember the model that
got the best data likelihood. Each time you restart, you start at a different point along the curve, and
hopefully eventually at one that leads to the global optimum.

Problem: EM does not care about semantics! Whether a label makes sense or not is irrelevant,
as long as it explains the data! It uses thisweird tag that only occurs once or twice, like FW (foreignweird tag

word).
Solution: Use a dictionary that constrains EMÕsP(w|t) choices to possible ones (all others will be

0). If you do completely unsupervised training (no dictionary), the labels become meaningless, and
the task is more like clustering. Each label becomes a cluster. In this case, you have to afterwards map
each of the clusters to a tag in order to label data and get the accuracy. One mapping ismany-to-1 many-to-1

(see Johnson 2007). Also, keep your data clean. EM wants to use everything. Yes, also that weird tag
that got in by accident... By assigning it to a frequent word, EM actually even thinks it has done a
good job.

Problem: EM uses unlikely tags too frequently, i.e. we have a ratherßat label distribution. ßat label
distributionIn language, however, most probability mass should go to one or two cases, the rest becomes less and

less likely, i.e., we have a ZipÞan distribution.
Solution: Use smoothing and a dictionary. Additionally, you might want to try techniques like

L0 normalization Vaswani/Pauls/Chiang 2010 or Bayesian inference with Gibbs sampling and sparse
priors.

SemNLP

Distribution

17

0

75

150

225

300

sense1 sense2 sense3 sense4 sense5true distribution
what EM Þndssense2 sense4 sense5 sense1 sense3

true distribution EM

Figure 21:Label distribution in EM and in reality

Problem: EM changes goodinitial parameters to make them worse. initial
parametersSolution: Fix as many parameters as you can! That will guide EM to only optimize the right

things. Also, add pseudo-counts before normalization to make changes less dramatic. The higher the
pseudo-counts, the smaller the normalization effect. You can see in Table 1 how the normalized values
of two parameters change when using different pseudo-counts. If you do not want to Þx anything
random restarts can help to Þnd a good starting point.

21

Parameter
fractional

counts
pseudo-
count

total
count t

resulting probabilities

(x|t)
(y|t)

1.1
3.5

0.0 4.6
P(x|t) = 1.1/4.6 = 0.24
P(y|t) = 3.5/4.6 = 0.76

0.5 5.6
P(x|t) = 1.6/5.6 = 0.29
P(y|t) = 4.0/5.6 = 0.71

1.0 6.6
P(x|t) = 2.1/6.6 = 0.32
P(y|t) = 4.5/6.6 = 0.68

Table 1:Inßuence of pseudo-counts

Problem: The resulting model isoverÞtting the training data (ÒLook, I can explain this dataoverÞtting

perfectly! And nothing else. . . ").
Solution: Again, use smoothing (addn to the fractional counts before normalizing) and stop after a

maximum amount of iterations (usually 50). This will prevent the data from being exactly modeled.

Problem: Ties. All transition options leaving from one node are equally good. EM doesnÕtTies

take a stance and just leaves all of them as is.
Solution: Start out randomly to avoid ties, and do restarts. This way, you can break the ties.

8 Useful Reading

If you want to read the original, go for Dempster/Laird/Rubin (1977).
Rabiner/Juang (1986) is a general overview over parameter estimation, but very math-heavy. Man-

ning/SchŸtze (2000) has a chapter on EM, based on clustering, but with an eye on other NLP appli-
cations. One of the most famous implementations for NLP is the tagging paper by Merialdo (1994),
which also gives you a good idea about the various parameters you can set.

If you want to know more about the Forward-Backward procedure of calculating alphas and betas,
check out Jason EisnerÕs tutorial (Eisner, 2002), including a spreadsheet with the changing values.

The second edition of the AI handbook (Russell/Norvig, 2003, 724 Ð 733) has a comprehensive
section about EM.

Kevin Knight has written a very compelling introduction (Knight, 2009a). It is mainly about
Bayesian Inference, but explains EM very nicely. You might also want to check out his tutorials
for Carmel (Knight, 2009b), a software that helps you implement graphical models as automata and
train them with EM. Also, the workbook for MT (Knight, 1999) contains a useful section on EM.

9 Further...

Vaswani/Pauls/Chiang 2010 show how usingL0 normalization can lead to smaller models and aL0
normalizationsparser distribution, which improves language related tasks a lot, because it creates a more ZipÞan

distribution (see Hovy et al. 2011 for another application).
If you want to get deeper into the matter, you could look intoEM with features (Berg- EM with

featuresKirkpatrick et al., 2010). Instead of just using conditional probabilities, which often cannot capture

22

useful properties (or only when encoded as additional states), you can add all the features you like in
discriminative models (like word sufÞxes or capitalization) and still do unsupervised learning.

Or explorestructural EM , which not only learns the parameter values, but also how many parame-structural EM

ters there should be.
If you do any of these things, or if you have questions, comments, or criticism, send me a mailÑIÕd

be dead curious to know!

Acknowledgements

Thanks to Kevin Knight and David Chiang for the basics, Congxing Cai, Karl-Moritz Hermann, and
Eduard Hovy for useful comments, and Ashish Vaswani, Victoria Fossum, and Taylor Berg-Kirkpatrick
for many enlightening discussions.

References
BERG-KIRKPATRICK, TAYLOR ET AL . (2010):Painless Unsupervised Learning with Features. In: North American Chapter

of the Association for Computational Linguistics..

BISHOP, C.M. (2006):Pattern recognition and machine learning. New York: Springer.

DEMPSTER, ARTHUR P./LAIRD, NAN M./RUBIN, DONALD B. (1977):Maximum likelihood from incomplete data via the
EM algorithm. In: Journal of the Royal Statistical Society. Series B (Methodological), 39, Nr. 1, 1Ð38.

EISNER, JASON (2002): An interactive spreadsheet for teaching the forward-backward algorithm. In: Proceedings of the
ACL-02 Workshop on Effective tools and methodologies for teaching natural language processing and computational
linguistics-Volume 1. Association for Computational Linguistics, 10Ð18.

HOVY, DIRK ET AL . (2011): Unsupervised Discovery of Domain-SpeciÞc Knowledge from Text. In: Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Port-
land, Oregon, USA: Association for Computational Linguistics&URL: http://www.aclweb.org/anthology/
P11-1147 ' , 1466Ð1475.

JOHNSON, MARK (2007): Why doesnÕt EM Þnd good HMM POS-taggers. In: Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL)., 296Ð305.

KNIGHT, K. (1999):A statistical MT tutorial workbook. JHU Summer Workshop, 1999.

KNIGHT, K. (2009a):Bayesian Inference with Tears. No address in, http://www.isi.edu/natural-language/people/bayes-with-
tears.pdf.

KNIGHT, K. (2009b):Training Finite-State Transducer Cascades with Carmel. 2009b.

MANNING, C.D./SCH†TZE, H. (2000):Foundations of statistical natural language processing. MIT Press.

MERIALDO, BERNARD (1994): Tagging English text with a probabilistic model. In: Computational linguistics, 20, Nr. 2,
155Ð171.

RABINER, L./JUANG, B. (1986):An introduction to hidden Markov models. In: IEEE ASSp Magazine, 3, Nr. 1 Part 1, 4Ð16.

RUSSELL, S.J./NORVIG, P. (2003):ArtiÞcial intelligence: a modern approach. 2nd edition. Upper Saddle River, NJ: Pren-
tice Hall.

VASWANI, ASHISH/PAULS, ADAM/CHIANG, DAVID (2010): EfÞcient optimization of an MDL-inspired objective function
for unsupervised part-of-speech tagging. In: Proceedings of the ACL 2010 Conference Short Papers. Association for
Computational Linguistics, 209Ð214.

23

http://www.aclweb.org/anthology/P11-1147
http://www.aclweb.org/anthology/P11-1147

A Python Implementation

1 import scipy as sp
2 from collections import defaultdict
3 import time
4
5 sp.set _printoptions(precision = 3)
6
7 # CONSTANTS
8 NINF = float(Õ-1e303Õ)
9 LINF = sp.log(NINF)

10 SMOOTHING = sp.log(0.1)
11 HARDNESS = 1.0/1.0
12 THRESHOLD = 0.00001
13 MAX_NUM_ITERATIONS = 40
14 logadd = sp.logaddexp
15
16 # parameters
17 start = defaultdict(lambda : LINF)
18 # P(x|y) = emissions[y][x] - this allows to sum over all values given y
19 emissions = defaultdict(lambda : defaultdict(lambda : LINF))
20 transitions = defaultdict(lambda : defaultdict(lambda : LINF))
21
22 # initialize
23 start[ÕVÕ] = sp.log(0.6)
24 start[ÕNÕ] = sp.log(0.4)
25
26 emissions[ÕVÕ][ÕIÕ] = sp.log(0.5)
27 emissions[ÕVÕ][ÕcanÕ] = sp.log(0.5)
28 emissions[ÕNÕ][ÕIÕ] = sp.log(0.5)
29 emissions[ÕNÕ][ÕcanÕ] = sp.log(0.5)
30
31 transitions[ÕVÕ][ÕVÕ] = sp.log(0.6)
32 transitions[ÕVÕ][ÕNÕ] = sp.log(0.4)
33 transitions[ÕNÕ][ÕNÕ] = sp.log(0.1)
34 transitions[ÕNÕ][ÕVÕ] = sp.log(0.9)
35
36 tags = [ÕVÕ, ÕNÕ]
37
38 examples = [
39 [ÕcanÕ, ÕIÕ, ÕcanÕ],
40 [ÕIÕ, ÕcanÕ, ÕcanÕ]
41]
42

24

43
44 converged = False
45 old _data _likelihood = sp.log(0.0)
46 iteration = 1
47
48 # repeat until convergence
49 # (i.e., difference of data-log likelihood < THRESHOLD or MAX _NUM_ITERATIONS)
50 while not converged:
51 print Õ=Õ * 20
52 print "iteration %s" % (iteration)
53 print Õ=Õ * 20
54 data _likelihood = sp.log(1.0)
55
56 # clear counts
57 start _counts = defaultdict(lambda : SMOOTHING)
58 emission _counts = defaultdict(lambda : defaultdict(lambda : SMOOTHING))
59 transit _counts = defaultdict(lambda : defaultdict(lambda : SMOOTHING))
60
61 # go through examples
62 for example in examples:
63 starttime = time.time()
64 N = len(example) * 2
65 M = len(tags)
66
67 ################
68 # forward pass #
69 ################
70 # alpha[i,j] = the probability of ending up with tag i at word j
71 alpha = sp.ones((M,N)) * NINF
72
73 for i, tag in enumerate(tags):
74 if tag in start:
75 alpha[i][0] = start[tag]
76 if example[0] in emissions[tag]:
77 alpha[i][1] = alpha[i][0] + emissions[tag][example[0]]
78
79 for j in range(2, N, 2):
80 for i, tag1 in enumerate(tags):
81 for k, tag2 in enumerate(tags):
82 if tag1 in transitions[tag2]:
83 # alpha[i,j] += P(t1|t2) * alpha[k, j-1]
84 if alpha[i, j] == NINF:
85 alpha[i,j] = transitions[tag2][tag1] + alpha[k,j-1]
86 else :
87 alpha[i,j] = logadd(alpha[i][j],

25

88 transitions[tag2][tag1]+alpha[k,j-1])
89 if example[j/2] in emissions[tag1]:
90 # alpha[i, j+1] = alpha[i, j] * P(word _j|tag1)
91 alpha[i,j+1] = alpha[i,j] + emissions[tag1][example[j/2]]
92
93 print "ALPHA:"
94 print sp.exp(alpha)
95
96 #################
97 # backward pass #
98 #################
99 beta = sp.ones((M,N)) * NINF

100
101 # initialize beta from the back
102 for i, tag in enumerate(tags):
103 beta[i][-1] = sp.log(1.0)
104 if example[-1] in emissions[tag]:
105 beta[i][-2] = beta[i][-1] + emissions[tag][example[-1]]
106
107 for j in range(N-3,0,-2):
108 for i, tag1 in enumerate(tags):
109 for k, tag2 in enumerate(tags):
110 if tag2 in transitions[tag1]:
111 if beta[i,j] == NINF:
112 beta[i,j] = transitions[tag1][tag2] + beta[k,j+1]
113 else :
114 beta[i,j] = logadd(beta[i,j],
115 transitions[tag1][tag2] + beta[k,j+1])
116 if example[j/2] in emissions[tag1]:
117 beta[i, j-1] = beta[i, j] + emissions[tag1][example[j/2]]
118
119 print "BETA:"
120 print sp.exp(beta)
121 print
122
123
124 # sum of all paths through example
125 example _likelihood = reduce(logadd, alpha[:, -1])
126 print "example likelihood: ", sp.exp(example _likelihood)
127
128 # add example likelihood to data likelihood
129 data _likelihood += example _likelihood
130
131
132 #############################

26

133 # collect fractional counts #
134 #############################
135 for i, tag1 in enumerate(tags):
136 if tag1 in start:
137 # if no smoothing, start from scratch, otherwise just add up
138 if start _counts[tag1] == sp.log(0.0):
139 start _counts[tag1] = start[tag1] + beta[i, 0] - example _likelihood
140 else :
141 start _counts[tag1]=logadd(start _counts[tag1],
142 start[tag1]+beta[i,0]-example _likelihood)
143
144 for j, word in enumerate(example):
145 if word in emissions[tag1]:
146 if emission _counts[tag1][word] == sp.log(0.0):
147 emission _counts[tag1][word] = alpha[i, j * 2] +
148 emissions[tag1][word] +
149 beta[i, (j * 2)+1] -
150 example _likelihood
151 else :
152 emission _counts[tag1][word]=logadd(emission _counts[tag1][word],
153 alpha[i, j * 2] +
154 emissions[tag1][word] +
155 beta[i, (j * 2)+1] -
156 example _likelihood)
157
158 for k, tag2 in enumerate(tags):
159 if j < len(example)-1 and tag2 in transitions[tag1]:
160 if transit _counts[tag1][tag2] == sp.log(0.0):
161 transit _counts[tag1][tag2] = alpha[i, j * 2+1] +
162 transitions[tag1][tag2] +
163 beta[k, (j+1) * 2] -
164 example _likelihood
165 else :
166 transit _counts[tag1][tag2]=logadd(transit _counts[tag1][tag2],
167 alpha[i, j * 2+1] +
168 transitions[tag1][tag2] +
169 beta[k, (j+1) * 2] -
170 example _likelihood)
171
172 print "%.5fsec" % (time.time()-starttime)
173 print
174
175 ####################
176 # normalize counts #
177 ####################

27

178 start _count _total = reduce(logadd, start _counts.values())
179 print "New START probabilities:"
180 print Õ-Õ * 20
181 for tag in start:
182 start[tag] = start _counts[tag] - start _count _total
183 print ÕP(%s) = %.2fÕ % (tag, sp.exp(start[tag]))
184
185 print "New EMISSION probabilities:"
186 print Õ-Õ * 20
187 for tag, words in emissions.iteritems():
188 emission _tag _total = reduce(logadd, emission _counts[tag].values())
189 for word in words:
190 emissions[tag][word] = emission _counts[tag][word] - emission _tag _total
191 print ÕP(%s|%s) = %.2fÕ % (word,tag, sp.exp(emissions[tag][word]))
192
193 print "New TRANSITION probabilities:"
194 print Õ-Õ * 20
195 for tag, tag _successors in transitions.iteritems():
196 transition _tag _total = reduce(logadd, transit _counts[tag].values())
197 for tag _successor in tag _successors:
198 transitions[tag][tag _successor] = transit _counts[tag][tag _successor]
199 - transition _tag _total
200 print ÕP(%s|%s) = %.2fÕ % (tag _successor,
201 tag,
202 sp.exp(transitions[tag][tag _successor]))
203
204 print
205
206 print "CHANGE:"
207 print Õold: %.5f (%s)Õ % (sp.exp(old _data _likelihood), old _data _likelihood)
208 print Õnew: %.5f (%s)Õ % (sp.exp(data _likelihood), data _likelihood)
209 change = -(sp.exp(old _data _likelihood) - sp.exp(data _likelihood))
210 print "change: ",change
211 assert change > 0.0
212 if change <= THRESHOLD or iteration > MAX _NUM_ITERATIONS:
213 converged = True
214
215 old _data _likelihood = data _likelihood
216 iteration += 1

28

Notes

1ANSWER:P(x|y) = P(x,y)
P(y)

2ANSWER:W is discrete,T is discrete, but binary, andL is boolean, and thus also binary.

3ANSWER: We count the occurrences of each ruleS" NP VPin a treebank and normalize by the number of times we

have seenS.

4ANSWER: Exactly, CKY parsing. . . You are getting good at this!

5ANSWER: We compute the distance between the cluster centroids and each point and assign it to the closest centroid.

6ANSWER: We divideP(t) $P(w|t) = P(w) $P(t|w) by P(w)

7ANSWER: You already had your model and would not need EM. . .

8ANSWER: Because words tend to be ambiguous. What is the most likely tag for "can"? It depends. It could be NOUN,

VERB, or AUX. But what is the most likely tag if we see "the can"? Still VERB or AUX? Probably not... The context

disambiguates it. ThatÕs why we want the transition probabilities.

9ANSWER: The probability that we end up with this sentence if we ran our model in generation mode.

10ANSWER: Well, Forward and Backward... What did you think? Though you could of course call Forward "Baum" and

Backward "Welch", but that seems a little unfair to Mr. Welch.

11ANSWER: Assigning each data point to one of the centroids (= the current model parameters).

12ANSWER: Because in both cases we walked through all possible paths of the lattice, summing them up.

13ANSWER: The count of the two events together and the counts of the given part.

29

	Introduction
	Preliminaries
	Probabilities
	Where Probabilities Come From

	Graphical Models
	Bayes Nets
	Hidden Markov Models

	Example Uses of EM
	The Goal
	Implementation
	HMM as Lattice
	Dynamic Programming
	Putting It All Together
	Example Run

	Finally...
	Troubleshooting
	Useful Reading
	Further...
	Python Implementation

