An Evening with. ..
EM

A Tutorial by Dirk Hovy
USCOs Information Sciences Institute
dirkh@isi.edu

October 20, 2012

The EM algorithm (Dempster/Laird/Rubin, 1977) is one of the most widely used un-
supervised learning methods in NLP. It is important to have a solid understanding of its
properties and limitations in order to use it well. However, it is quite complex and a bit
tricky, and can easily be confusing for the beginner. There are a lot of terms, a lot of
implementations, and a lot of Greek letters to add to the confusion. This tutorial tries
to avoid the confusion by providing the step-by-step implementation of a concrete case
(with pseudocode and a Python implementation), highlighting only the necessary terms
and providing laymanOs explanations of the underlying concepts.

1 Introduction

Before we look at what EM is, letOs look at some of the common misconceptions about EM, and clear
upwhat it is not: what it isnot

¥ amodel (itOs a way to optimize one)
¥ a silver bullet (you have to be careful what to use it for)
¥ magic (really, itOs just code. . .)

So, after we got that out of the way, letOs see what EM actually is. EM is a farnsopervised unsupervised
learning. It is not so much an algorithm, but rather a class of algorithms that use a 2-step procd@Rireg
(E step, M step) to train generative model Generative models are joint probabilitig¥(X,y)) that generative
explain how the data was, well, generatdis¢riminativemodels, on the other hand, are simply weigHpodel
vectors that explaiR(x]y)). EM tries to bnd the parameters of a model which best explain the observed
data. Or: "If only I knew X, | could estimate Y. If only | knew Y, | could estimate X." We will see this
sentence a couple of times.

Throughout the tutorial, there will be little questions to see whether you are still awake. You can just
ignore them and read on, or try to solve them and feel good when you look up the answer at the end.
DonOt beat yourself up when you got one wrong, though!

Also, do not get scared by complicated-looking formulas. We will translate them into plain English,
and the mathematical notation will become just the shorthand it was meant to be.

2 Preliminaries

In order to understand EM, we need to look at probabilities and graphical models. If you are not quite
sure what they are, fear not, we will explain them in the next sections. If you are already familiar with
the concepts, you can skip ahead to Section 3.

2.1 Probabilities

We will be talking about probabilities a lot, so we will review some basics. If you want to get deeper
into it, look at the relevant sections in Manning/SchYtze (2000) and Russell/Norvig (2003).

Since we do NLP, letOs look at the probability of words. Say we have a corpus of 100 sertisnces,
"unsupervised" and occurs in 20 sentences,yeisdlearning" and occurs in 50 sentences.

Probabilities are basically counts that have been normaliB¢g), or the probability of seeing a P(x)
sentence with "unsupervised", is simply the count of sentences with "unsupervised" (20) divided by
the number of all sentences in our corpus/text (100).

counf(sentences wWunsupervise _ 20 _ 1 _
number of all sentences =~ 100 5

P(unsupervisejl=

(1)

P(x,y) is ajoint probability , i.e., how likely is it that we ser andy together, that is the words injoint
one sentence ("unsupervised learning” or "learning unsupervised", or even separated by other epaility
order does not matter in this case). Say we have 10 sentences that contain both words, then

couni(sentences wunsupervise®and Qearning)

P(unsupervisedearning) = 2
(P d 9 number of all sentences @)
10 1
= — = >=01 3
100 10 3)
P(y|x) is aconditional probability , i.e., how likely is it to seg after having seer, or "learning” in conditional
a sentence that contains "unsupervised". We can compute this as probability
couni(sentences wQunsupervise@and Gearning)
P(|X) — P(X- y) _ number of all sentences (4)
YIx) = P(X) - couni(sentences wainsupervise@)
number of all sentences
_ couni(sentences wunsupervise@and Qearning) 5)
- count(sentences winsupervise@)
10 1
= _—=2-=05 6
20 2 ©)

Note that ordedoesmatter in this case!

QUESTION: What would be the corresponding probability formulation for seeing "unsu-
pervised" in a sentence that contains "learnifg"?

2.1.1 Where Probabilities Come From

You might have wondered where the probabilities we are gonna use come from. That is a very good
question, and there are two answers. The good, scientiPcally satisfying answer is Odata". We can use
the statistics collected by statistical institutions (now you know what they are good for), or we can
get them by counting and dividing from (preferably large amounts of) data. How likely is ist that it is
sunny in LA? Get the weather data of the last 30 years, count the days nsarkeghnd divide by the

total number of days. The larger your sample, the more accurate your probability.

The other, less satisfying answer is Oelaborated guessing”. Some things cannot be measured, or there
is simply no data (some things are just too rare. The only exception to this rule is baseball. There are
statistics for everything in baseball). What is the probability of being eaten by a tiger in Montana?
Probably very small (luckily), but what number is Overy small"? We can make up a number, but it
might not be accurate.

The good news is that we can use EM to make up numbers and then adjust them until our model
explains the data best.

2.2 Graphical Models

Graphical Models are a nice way of visualizing probabilistic models, and also to express the depen-
dencies that hold between the individual elements. There are several types of graphical models, but the
ones we are interested in (and the ones we mean when we use the teBayaseNetsandHidden Bayes Nets
Markov Models (HMMs). Graphical models consist of two elementedes and arcs Hidden
The nodes areandom variables. Random variables are events that have some probability, and cdfaeov
in different Ravors. If a random variable has exactly two values {li®of f} or {true, falsg, they Models
arebinary (in the latter case boolean). If they have a list of values (something fide green bluek gfgses and
or {chocolatevanilla, strawberry pistacchig), they arediscrete. If they have numbers as values,,,qom
they are callecdontinuous The probabilities associated with each of the values of a random variallebles
sum up to 10, i.e., the valuegred, greenblue} for the variableCOLORcould be{0.2,0.5,0.3} or binary
{0.33,0.33,0.33}, but not{ 0.8,0.4,0.7} . discrete

continuous

@

Figure 1:A simple graphical model with three random variables

Arcs are the directed links between the random variables, and you can think of them as causal relations
(there are other kinds, but it is easiest this way). They denote what inBuence the parent has on the
child node. This inBuence is expressed by a conditional probability. Thus in a network like the one in
Figure 1, we can say how likely it is that trafBPE)(is bad, given that the weatheY\() raining. A node

X can have several parents, which means that its value is inBuenced by several factors (trafbc could
also be inBuenced by a Lakers garf®, If there are no links between two variables, then they are
independent of one another, i.e., whether the Lakers play or not luckily has no inBuence on the weather
W (the examples in this section are largely inBuenced by Russell/Norvig 2003).

2.2.1 Bayes Nets

T w P(TIW) L T P(L|T)

normal | sunny 0.5 true normal 0.1

bad sunny | 0.35 false | normal 0.9

terrible | sunny 0.15 true bad 0.85

normal | rainy 0.1 false bad 0.15

bad rainy 0.6 true terrible 0.9

terrible | rainy 0.3 false | terrible 0.1

w P(W)

sunny 0.95

rainy 0.05

Figure 2:A Bayes Net with three variables

If we combine several nodes in a network, we call it a Bayes Net. LetOs look at a very simple example
(Figure 2), inspired by Russell/Norvig (2003). Say we have three random variables, namely the weather
(W), with values{ sunnyrainy} ; trafbc (T'), which can bg normal, bad, terrible}; and whether we are

late for a meetingl(: {true, falsg).

QUESTION: What are the types of the random variableésT, andL??

From pop culture we know that it never rains in southern California, and from our meterological data
(see section 2.1.1) we know thagévermeans 5%. So the probabilities féf are(0.95,0.05). If we

talk about the probability of a specibc outcome of the variables values, weR{Vitec sunny = 0.95

or shorterP(sunny = 0.95.

If it rains, trafbc tends to get worse, and if trafpc is bad, we are more likely to be late for our meeting.
Ifitis sunny the trafpc behaves different than when itdsy, so we have to specify the probability of
each value of for each value ofV. We do that in a table, where each column is a value for a variable,
T andW. Notice that the rows with the same value Yrhave to sum up to.0. You can imagine that
each value for weather is a state you are in, and the different valu@sd options you can choose
from. Some options are more likely than others, but all probability is distributed between them (thus
summing to 10). You cannot choose something that is not there.

Whether | am late for a meetind) in turn depends on the state of the traf®#g,(so we have to
specify another table with probabilities for each valué afiven each value of . Again you can see
that with worse trafbc, our chances of being late increase.

Using the Bayes Net, we can now compute how likely we are to be late if the weather is bad but
trafbc is normal, and other interesting things.

2.2.2 Hidden Markov Models

E —
e

E

@<—@<—Ci>

?_,
!

O——E

Figure 3:A Hidden Markov Model of the Bayes Net above

Things change over time, but they migh tbe connected. TomorrowOs weather does not just happen, it
actually depends on the weather of today. If we want to capture this, we can include another kind of
conditional probabilities, namely the ones expressing how a random variable changes over time. This
is the Markov part of HMMs. To make things easier, we assume that each state depends only on the
previous one, not all previous states. This is one of the so-cMidov properties. In order to Markov
make it ahiddenMarkov model, we assume that the random variable we are actually interested MfPprties
unobservable, but related to something we can observe.

Using our example from above, we have the following scenario: one year from now, we want to get
the sequence of sunny and rainy days that occurred (see Figure 3). We do not remember the weather
(W is hidden), but we do have our diary, in which we noted for each day whether we were late or not
(L is our observed variable, and it is dependentn We just copy the Bayes net from above for
each day, and add the new transition probabiliBéaf|\W: 1) between each of the Bayes nets. The
probability means Ohow likely is it to Beainy, sunny today if it was{ rainy, sunny yesterday".

In this case, we do have another hidden variabldyut it is not necessary for HMMs. The important
part is that whether | am late one day does not depend on whether | was late the day before, but on the
weather on that day. Also, the trafbc of today is independent of yesterdayOs trafbc. This is why there
are no arcs between tfieandL variables, only th&V nodes. This is another Markov property, that the
observations (herd,) are independent of one another. We guesstimated the probabsiig¢d/) and
P(L|T) based on intuitions or data (we will later say, we initialized them), and we could now use EM
to adjust them to ref3ect observations, using our diary as data and reconstructing the weather one year
ago.

3 Example Uses of EM

LetOs start with a practical NLP example of what EM is good for. Say you have a context free grammar
(CFG), and would like to attach probabilities to each rule BFK&" NP VRS) to say how likely it is
thatSgoes toNP VP(vs. thatSgoes toS CC $.

QUESTION: How do you get the probabilitie$?

ThatOs easy enough, but it presupposes that we do have some suitable treebank. What if we do not
have a treebank, only plain text? This case is far more common... No problem, if you just had some
rule probabilities, you could generate a treebank by applying the most likely rules to produce the text.

QUESTION: What would you use to do th&t?

Oh wait, dangit! To get those rule probabilities, youOd have to have a treebank to collect them from.
But thatOs what we wanted in the brst place. This is a pretty circular problem! OIf only | knew the rule
probabilities, | could make a treebank from text. If only | had a treebank, | could compute the rule
probabilities. . ."

EM can help us solve this problem. But how?

If you know k-means clustering, you already know how EM works! If not, donOt despaimeans
Here is an example: We want to divide the green points in Figure 4 into a red and a blue cluster. If

Figure 4:k-means clustering. ModibPed from Bishop 2006

only we knew the cluster centroids, we could assign the data points to the closest clusters. If only we
knew which clusters the data points belong to, we could compute their centroids... Sounds somehow
familiar? Again, we have a circular problem. And here is how we gonna solve it:

We start by randomly placing cluster centroids on the graph (a). Then, we assign each data point to
a cluster (b).

QUESTION: How do we assign the points to a cluster?

Then, we compute the centers of those new clusters and move the centroids to that position (c).

Algorithm : KMEANS(K)

foreachc# k
do centroidc] = randon(x, y)

whilg not converged
comment: E step

for eachc; # clusters

doci= COMPUTECLUSTERMEMBERY(i)
do
comment: M step

4 for each fj # centroids
¥ do f; = COMPUTECENTER(C;)

Figure 5:Pseudocode for themeans algorithm, adapted from Manning/SchYtze 2000

As we can see, we alternate between assigning the points to clusters and computing new centroids.
Once the centroids stop moving around, we are done.

EM works similarly, and in fact is a Osoft" versionkefeans. Instead of assigning each point to
just one cluster (hard clustering), EM will attach a probability to the membership of a point in each
cluster P(clustefpoint)). A data point can thus belong to several clusters (though with different
probabilities).

Probably the most well-known NLP task for EM labeling unannotated text. We want to Pndabeling
arg ran(t|w), i.e., given some words, what is the best tag sequert@eOr: OIf only | knew the right

tag sequence, | could compute their probabilities... If only | knew the tag probabilities, | could tag
the words." This is going to be our running example, and | will ugar a tag sequence awvdfor a
word sequence. The subscrigtenotes the position in the respective sequences(theit” word).

As mentioned in the prst section, there are several algorithms to do EM (especially the E step), and
the one we will be using is theorward-Backward (or Baum-Welch) algorithm for labeling (there arerorward-
other algorithms for other tasks). Backward

4 The Goal

What we want from EM is the modg@larametersthat best explain the observed data.If we plot hoparameters
well a model conbguration explains the data over all possible parameter conbgurations, we get the
graph in Figure 6.

global maximum

local maxima

\

how well does the model explain the data

configuration of model parameters

Figure 6:What we try to optimize with EM

The conbguration we want is the one at the highest peak. As you can see, there are several smaller
peaks. These are local maxima (they are a bit of a hassle, but we come back to that later).

LetOs brst look at how we get those parameters. There will be a few formulas involved, but
donOt be intimidated, they are easier than they look.
Remember that EM models a joint probability distributi®fx,y). One can write that as

P(x,y) = P(y) $P(xly) = P(x) $P(y|x) (7)

The last two parts are the same because we donOt care about the rralednf To see why that is

Figure 7:Venn diagram foP(x, y)

so, look at the diagram in Figure P(x,Yy) is the grey area. To get that, we can just look ahd the
part of it that overlaps witly. This isP(x) $P(y|x). You could call this verk-centric. If you donOt like

that, you can get the same result by looking and the part of it that overlaps with That would be
P(y) $P(x]y).

In our case, however, we donOt want to modehndys, but the probability of a word and tag
sequence occurring togethé{(w;t). So letOs substitukeandy for w andt and see what we get.
Something like

P(wt) = P(t) $P(w|t) = P(w) $P(t|w) 8)

This says that the probability of the word and tag sequence togéthet)) is equal to the probability
of the tag sequencB(t) times the probability that we generate the words from that tag sequence
(P(w]t)). It is also equal to the probability of seeing those wordéa)) times the probability of
turning those words into that tag sequeng|fv)). Both are equivalent t€@(w,t), and that fact will
come in handy.
What we want to maximize is the last pa?(t|w) (i.e., what is the best tag sequence for the sentence
we see), since we have the words and want to know the tags. LetOs take the last two parts and move a
few things around to gd®(t|w) alone.

QUESTION: How do we do that? DonOt peak ahefd...

P(t) $P(wt) _
W = P(t|w) 9

Ok, thatOs something. Take a deep breath and make sure you followed this.

Since we observev (the sentence), we can say thatw) is 1.0. In that case we can forget
about that denominator! So what we want to optim2é|W)) is simply

P(tlw) = P(t) $P(w]t) (10)

Much cleaner, hmm?
LetOs look at th&(t). The probability of seeing the whole tag sequetigs, ...,t, (P(t)) is really
just the product of seeing each of the tags following another tag. We write that as

P(t) = P(t1) $P(t2|ts) $P(ts[t2) $... $P(tnltn 1) (11)

or for short
P(t) = P(t)) $1 P(titir 1) (12)
i=2

Ok, so we played with the formula, made it cleaner, and dissé{tgd But how does that help us?
Good question.

We wanted to bnd the parameters for our model, and now we have P@pandP(w|t). So we
put it all together, and what we want to optimize is Pnally the product of our two parameters.

P(tw) = P(tr) SP(wilt)) 1 P(t [t 1) SP(wi[t) (13)
i=2

By the way: parameters come in two Ravoiree parameters(these are the ones we want EM tdree
optimize) andoxed parametergwe already know these and donOt want EM to change them). YouRgggmeters

make all parameters free or just some! Pxed
parameters

QUESTION: What happened if you bxed all parametérs?

5 Implementation

In order to compute the parameters, we have to develop a data structure that allows us to manipu-
late them. We will use a Hidden Markov Model to represent the model and lattice-based dynamic
programming to compute and manipulate the probabilities. The following sections walk through the
individual parts and explain them in detail using pseudocode. You can bnd a Python implementation
(not optimized for performance) in the Appendix (page 23).

5.1 HMM as Lattice

AL
Figure 8:The Hidden Markov Model of the tagging task

The idea of our HMM (see Figure 8): What we can see (the words) was generated by something we

cannot see (the tag sequence). This isgamerative story Sounds strange? Just wait... generative
story

Tags are connected byansition probabilities P(t]ti 1), and emit words withemission prob- transition
abilities P(wi|tj). These look strangely familiar... We could also say OAssume the brst word Righgbilities
generated by the prst tag, how likely is it the next word was generated by the next tag, and how éikésision
is it that that tag followed the brst?" This translates to a sequence of conditional probabilities th&{3RRP!tes
already know from earlier (arenOt you glad now we went through all those equations?):

P(tw)= | P(tlty 1) SP(Wil) (14)
i=1

10

Again, this just means Othe most likely tag sequence given a sentence is computed by concatenating
the most likely tags that can emit those words".

QUESTION: Why do we need(t;[ti; 1) in there? Why donOt we just take the best tag for
each word P(t|w)) and be doné®?

We can model HMMs as a matrlattice (or automaton) of tags and words, as in Figure 9, bsttice
replacing each random variable in the HMM with all possible values and drawing all possible arcs
between them. This can be tricky, and translating from a graphical model to a lattice takes some
getting used to.

In this case, we want to label OMice like cheese", and have an alphabet of only twhl g,

V. It is important to specify all the tags you want to use. We start from a designated start state and
from there choose one of the tags with the respective probaB{lily From each of those possible tag
states, we can emit a word with the respective probal#ijty|t). Those are the horizontal lines in our
lattice. Then, we choose the next tag with some probali#iftyt; 1). Those are the crossing lines in

the lattice.

To visualize this, we list all tags as rows. If we haveliationary that tells us that some wordsdictionary
can only have certain tags, we simply set all otRéw|t) for this word to O (here, we could set
(P(micgverb) = 0) and omit the arcs. If we donOt have a such a dictionary, we have to assume that all
words can be emitted by all tags and let EM bgure it out.

mice like cheese
> (PN~ S P(NIN) -
P(micelN) S =4 P(like|N) '@ P(cheese|N)
P(ENDIN)
P(N|V) P(N|V)
P(VIN) P(VIN)
P(ENDJV)
P(mice|V) -~ P(like|V) o~

P(cheese|V)
PVIV) '@ ”

O

()
»\2,2 »2.3
A4 P(VIV) I

Figure 9:The lattice for the sentence "Mice like cheese" and two possible tags, N and V

Ultimately, we want to learn which tags follow one another, ¥aysually comes afteN, and
which words have which tags, e.¢ike is most of the times a verb, never a noun. Only expressed as
probabilities: what if?(like|V)? So how do we assign those values? We reward good parameters, i.e.,
transitions that incread®(sentenck and we decrease bad ones. As a brst step, instead of just taking
whole counts of how often we see a transition, we "weigh" them by how likely the resulting sentence

was P(sentency. This is calledractional counts. fractional
counts

QUESTION: What do you think is?(sentencg?®

11

We could try to just generate all possible taggings of a sentence (see Figure 10) and count how often
we seeN following V and Ocheese" was taggedNasand then sum them all up to getsentencp But
there is a problem...

P(N|START P(mice|N) P(N|N) o\ P(like|N P(N|N P(cheese|N P(END) ‘
D@ >O >OQ— > OO = O
P(N STARTi () P(mice|N) 3 O P(NIN) 3 O P(like|N 3 O P(VIN 3 () P(cheese|V) 3 () PSENDQ

P(N[START] P(mice|N) PIVIN) o N\ P(ike]V) o PVV) o P(cheese|V P(END
G0 >O > >O SO s O s CD
P(N START! () P(mice|N) > O P(V|N) > f\ P(like|V! 3 O PNV, 3 () P(cheese|N) 3 O P(END) & ‘

P(V|START P(micelV) P(V|V) - P(like|V’ P(cheese|V P(END) ‘
G0 >O >O— > O— (OO
P(V| STARTi () P(mice|V) > O P(V|V) > 7\ P(like]V) ;O P(N|V) ;O P(cheese|N 3 () P(END) ﬁ
M’O P(mice|V) > O P(N|V) ‘ P(like|N) ‘O P(N|N) O P(cheese|N) Ow‘
F’VSTARTi () P(mice|V) > O P(N|V) \O P(like|N 3 O P(VIN 3 () P(cheese|V) 3 () PSENDQ .

Figure 10:Naive listing of all possible tag sequences

C

O C

Say each word has on avg.52tags, and a sentence has 17 words, like this one. Th&ihsa?
5,820,766 possible paths through that lattice. For just one sentence! Imagine a sentence with 50
words. .. Clearly, we cannot afford to do that. We will have to do something else. And that something
is dynamic programming, see Section 5.2. dynamic

programming
An aside: since we multiply a lot of transitions to get through the lattice, the numbers can
quickly become very small. To deal with this, you can use the logarithm of the probabilities.

The smaller a number gets, the larger its negative log will be. Since the range of probabilities is
between 0 and.0, this corresponds an interval between negative inPnity and 0 in log world.

If you do use logarithms, all multiplications shown here become additions (which is slightly faster),
and all additions have to be log-additions, a special computation that unfortunately is relatively slow,
and works like this:

Algorithm : LOGADDITION(X,Y)

m= min(x,Yy)
big= 10°°
if y! x> log(big)
then return (y)
else ifx! y> log(big)
then return (X)
else return (m+ log(exp(x! m)+ exp(y! m)))

12

Figure 11:Adding logs, adapted from Manning/SchYtze 2000

In the remainder of the paper, | use OnormalO probabilities (not logs) since it would clutter the code.

5.2 Dynamic Programming

Back to our question: we wanted to know wigtike|V) is. This now turns into the question of how
likely it is that we end up at the node that Ha@ike|V) as outgoing transition (in our example node
(2,3)). And once we took that transition, what is the probability from the node we reach(%,.4))

to the end?

Since we have modeled the HMM as a lattice, we can use dynamic programming techniques. This
allows us to compute how likely it is to arrive at each node (with the Forward algorithm), and to get to
the end from there (with the Backward algorithm).

S this is where we use the Forward-Backward algorithm! It consists of two parts.

QUESTION: What are the names of those patts?

We use Forward-Backward in order to efbciently compute for each sentence how often we see each
transition and what the probability of that sentence is. We need both for the fractional counts. Forward-

Backward is the E step in our EM implementation: we compute the expected counts given the current
model parameters.

QUESTION: What is the equivalent in clusterint?

When you model the lattice, it is a good idea to use a matrix or some such data structure in your
implementation, so you can access the nodes directly.

The Forward Algorithm

In the forward pass, we compute a new lattice with the same dimensions as the original one, whickard pass
contains for each node the sum of all possible paths that lead up to there (see Figure 13). These values
are also calledlphas. ! [i, j] denotes the probability of all paths up to nddg). ! [START s always alphas
1.0. Each subsequentis just the sum of all transitions arriving there, each multiplied by! tref the
node where it (the transition) originated.

I [END] is the sum of all paths through the lattice, which is equaP¢sentence P(datd) is the
sum of allP(sentencgin the data. In each iteration, just add up all thEEND] of the sentences.
RememberP(data has to increase with each iteration, or there is something wrong! EM guarantees
that the likelihood of the data increases at each iteration over the data. OutfR(tiiag) is thus a
good way of debugging your code: if it does not increase, something went wrong. . .

13

Algorithm : FORWARD(instance

comment: each word has substitution and transition probabilities and thus 2 nodes
comment:the length of the lattice is thus 2 * no of words in the instance

comment: populate Prst column

for e%h j # tags
4o | [1,01= P(tagdjl’STARTS
U[j,1]="![]j,01$P(wordljtagqj])

comment: walk the lattice

for i# (2, l[wordq! 2,i+= 2)
i for eqch j # tags
for eachk # tags
$ do$ do ! [j,i]+= P(tagdjlitagdk]) $! [k,i! 1]
L [j,i+ 1= ! [j,i]$P(worddi/ 2]|tagd])

do

comment:compute! [END]

for j # tags
do! [END]+= ! [j,|wordg! 1]$P(*ENDftagqj])

Figure 12:Pseudocode for the Forward algorithm

The Backward Algorithm

Thebackward passis almost the same as the forward pass, just backwards (note how the directioackivard
the arrows is reversed in Figure 14). Again, we compute a new lattice, which contains for eachR#6éle
the sum of all possible paths that lead from that node to the end. These values arbaetakled][i, j] betas
denotes the summed probability of all paths from n(idg to the end. This time, however, we start at
the end.” [END] is always 10.

A useful property for debugging is the fact tiSTART = ! [END].

QUESTION: Why are they the samé&?

14

start = 1.0

l13=t12! P(NIN)+ 55! P(N|V)

mice like cheese
!rl\,z — !fl\'a '1,4 — 115 ''1,6
Pmicel) > ey '@ P(cheese|N) @
P(N|V)
END
P(VIN) P(VIN)
P(ENDJV)
P(mice|V) ™\ P(like|V) N P(cheesel|V)
»(2,2, »(2,3 > (2,4 >»(2,5 >
12,2 123 a3 4 uz5 !2,6

Figure 13:Computing the alphas in the Forward pass

' mice l like | cheese
‘11 fl\z — fl\s Y14 - ‘15 ‘16
7 P(mice|N) L2< LI< P(like|N) @ N " P(cheese|N) @
P(NIV) P(NIV)
P(VIN) P(VIN)
P(ENDIV)
P P(mice|V) N b P P(like|V) . P P(cheese|V)
@ - @ - P(V|V) \Zy - @ - P(VIV) o=
21 12,2 123 124 25 26

Figure 14:Computing the betas in the Backward pass

15

Algorithm : BACKWARD(instance

comment: each word has substitution and transition probabilities and thus 2 nodes
comment: the length of the lattice is thus 2 * no of words in the instance

comment: start at the end

for e%h j # tags
" [i,2$|wordd] = P(*ENDftagdj])

do . [j,2$|wordd! 1]= "[j,2%|wordq]$P(wordqlast]|tagqj])
fori# (2%|wordgd! 2,0,i! = 2)
1:"étfor eqch j # tags
do # for eachk # tags
§ dog do"[j.i+= P(tagdK]|tagdj]) $" [k.i+ 1]

[j,it 1]="[],i]$P(worddi/ 2]|tagqj])

comment: optionally, one can compute[END]. It should= ! [START

for each j # ranggnoOfTag}
do" [START+= " [j,0]$P(tagdj],"START}

Figure 15:Pseudocode for the Backward algorithm

Collecting Fractional Counts

| | i [
fracCount (like|V) = —23° P(ike[V) ! "24

\% P (like|V) —
2,3 —(2,4
7V

Figure 16:Collecting fractional counts fde(like|V)

Once we have the alphas and betas, it is easy to compute for each transition how much it contributes
to P(sentenck So, once more, with conviction, how goodAflike|V)? Remember, we have to know
the likelihood of all possible paths arriving at no@3), and the probability B once we have taken the
transition B fron{2,4) to the end. See Figure 16.

16

We used the forward algorithm to get the probability of arriving at n¢J8), and the backward
algorithm to compute how likely it is from nod@, 4) to the end. We divide that by the likelihood of
the sentence<(! [END]), et voila!

Algorithm : COLLECTCOUNTS()

comment: collect the fractional counts of all transition in the current example

for egchi # tags
¢ countgtagdi],”"STARTH+ = (1.0$P(tagdi]|’START)$" [i,0])/! [END]
count$’END”tagdi]]+ = (! [i,2$|word4]$P(*ENDftagdi]) $1.0)/! [END]

for each j # words

A comment; substitution counts

do countgwordqj],tagdi]]+ = (! [i, j $2] $P(worddj]|tagdi]) $" [i,(j $2)+ 1])/! [END]
#
do , comment:transition counts

for eachk, # tags
i docountftagdk],tagdill+=(! [i,(j$2)+ 1]$P(tagdK][tagdi]) $" [k (j + 1) $2])/>>
* 1 [END]

Lo

Figure 17:Pseudocode for collecting fractional counts, OEO denotes line breaks

The M Step

Computing alphas and betas and collecting the fractional counts for all free parameter transitions over
all examples is th& step. This, as the name suggests, is one half of Forward-Backward EM, and #tep

this case the bigger half. T stepis comparatively trivial: after having gone through all the data, westep
just normalize our fractional counts to get probabilities back (remember, probabilities are normalized

counts).

QUESTION: What do you need to compute conditional probabilities from cod#ts?

17

Algorithm : NORMALIZECOUNTS()

comment: normalize the fractional counts to get probabilities

comment: get total counts for each tag

for eqachi # tags
i totalTransitiof’STARTH+ = countgtagdi],”STARTP
for each j # tags
do, dototalTransitiorjtagdi]]+= countgtagdj],tagdi]]
i for each j # lemmas
do totalSubstitutioftagdi]]+ = countgwordqj],tagdi]]

&

comment: divide fractional counts by totals

for eachi # tags
P(tag’STARTP= countftagdi],”START} totalTransitiof’ST AR TP

for each j # tags
i doP(tagdj]ltagdi]) = count$tagdj],tagdi]}/ total Transitioritagdi]]
i for each j # words
do P(wordq]|tagdi]) = count$wordqj],tag[i]]/ totalSubstitutioftagdi]]

do

Figure 18:Pseudocode for normalizing counts to get the new parameters

5.3 Putting It All Together
If we put the E step and the M step together, we end up with the Forward-Backward EM algorithm!

Algorithm : FORWARD-BACKWARDEM()

while, not converged
» dataLikelihood= 0.0
for egchinstance# instances

FORWARD(instancg
BACKWARD (instance
COLLECTCOUNTS()
dataLikelihood-= ! [END]

#
do

&

¢

¥ NORMALIZECOUNTS()

Figure 19:Pseudocode for the Forward-Backward EM algorithm

18

The convergence criterion in this case is how much the data likeliRgddta) has improved since
the last iteration. Once it starts to Ratten out, we can assume that we reached a maximum on our curve
and stop. Itis also customary to set a maximum number of iterations (50) and stop even if EM has not
converged, to avoid overbtting.

And thatOs it. No magic, no silver bullets, just counting and normalizing. EM will adjust all

the free parameters to get the maximum data likelihood, and you can then use those probabilities to
label data using the Viterbi algorithm.

5.4 Example Run

can | can
- ;0 = PVIV)
P(VISTARJ 0.12# pleant P(IV)
P(VIN)
P(N|V)
0.4 . .
P(can|N) > P(IIN) ;@ . ;@
0.125

Figure 20:!! and" values for example run

If you want to check whether your implementation is working, here is a little toy example. LetOs take
the tags ONO and OVO, and the veamiand| and initialize our model with the following numbers
(this example is based on one used by Kevin Knight.)

Transitions:
P(VIV)= 0.6
P(N|V)= 04
P(VIN)= 0.9
P(N|N)= 0.1
P(VISTART = P(V)= 0.6
P(NISTART = P(N)= 0.4
Emissions:

P(canV)= 0.5

19

P(1]V)= 0.5
P(canN) = 0.5
P(I|N) = 0.5

As our only observed instance we use the sentence Ocan | canO. sYand" s after the Prst
iteration should look like they do in Figure 20, where th@alues for each node are shown on a white
background above the nodes, dndalues with a grey background below the nodes. The arrows point
forward, but you can safely ignore them.

6 Finally...

CONGRATULATIONS! You have made it through. You now know EM and can go and try it out...

You do not have to be constrained to HMMs with hidden inputs, like we used here. Maybe
you do not have sequential data. In that case the HMM becomes a Bayesian network (which is an
HMM without the transitions).

Maybe you know both the inputs and outputs, but not the hidden varkalbtat connects them .
In that case you just want to know the conditional probabiliB€X|input) andP(out pufX) (in our
diary example above, you might also have the weather reports from that time and want to compute the
trafpc probabilities). EM can help you in those cases, too.

If you want to apply EM to other problems, always start with the inputs and outputs. What are
the observed variables? Are the inputs hidden, or can they be observed, too? Is it a sequential model
or a network? Write down the joint probabili®(x,y) and see how you can factor it. Drawing a
graphical model helps.

Think about how you can express the parameters as conditional probabilities. Do you need ad-
ditional (hidden) variables? What is your E step, what is your M step, what is the data you iterate
over? Once you have bgured all this out, you can start to look into implementations. Do not focus on
implementation details like Forward-Backward in the beginning.

7 Troubleshooting

There are some problems that can arise, and it is good to be aware of them and know how to deal with,
or, better, avoid them.

Problem: What we maximize B(data b is often not what we want to evaluate (say, the tag-
ging accuracy as compared to gold data)

Solution: Design your model with this in mind and try to formulate the problem so that the two
criteria are similar. Keep test data around and evaluate your models on it.

Problem: Local maxima. EM improvesP(datad at each iteration, but can get stuck in localocal

maxima. Remember the graph from section 4: there are many suboptimal parameter conbguratiHénat
which EM stops because it can not improve from there. The result is not the best model, though.

20

Solution: Restart EM 50 times or more with random initializations, and remember the model that
got the best data likelihood. Each time you restart, you start at a different point along the curve, and
hopefully eventually at one that leads to the global optimum.

Problem: EM does not care about semantics! Whether a label makes sense or not is irrelevant,
as long as it explains the data! It uses thisird tag that only occurs once or twice, like FW (foreignweird tag
word).

Solution: Use a dictionary that constrains ENBQs|t) choices to possible ones (all others will be
0). If you do completely unsupervised training (no dictionary), the labels become meaningless, and
the task is more like clustering. Each label becomes a cluster. In this case, you have to afterwards map
each of the clusters to a tag in order to label data and get the accuracy. One mappanyig-1 many-to-1
(see Johnson 2007). Also, keep your data clean. EM wants to use everything. Yes, also that weird tag
that got in by accident... By assigning it to a frequent word, EM actually even thinks it has done a
good job.

Problem: EM uses unlikely tags too frequently, i.e. we have a rafaérlabel distribution. Ratlabel
In language, however, most probability mass should go to one or two cases, the rest becomes |E4r@HiEPN
less likely, i.e., we have a Zipban distribution.

Solution: Use smoothing and a dictionary. Additionally, you might want to try techniques like
Lo normalization Vaswani/Pauls/Chiang 2010 or Bayesian inference with Gibbs sampling and sparse
priors.

300

225

‘O ftrue distribution O EM
150

75

0 0
sensel sense? sense3 sense4 senses

Figure 21:Label distribution in EM and in reality

Problem: EM changes goauitial parameters to make them worse. initial
Solution: Fix as many parameters as you can! That will guide EM to only optimize the rigggmeters

things. Also, add pseudo-counts before normalization to make changes less dramatic. The higher the

pseudo-counts, the smaller the normalization effect. You can see in Table 1 how the normalized values

of two parameters change when using different pseudo-counts. If you do not want to bx anything

random restarts can help to bnd a good starting point.

21

Paramete fractionalpseudoy total resulting probabilities
counts | count | count {

P(x|t) = 1.1/4.6 = 0.24

00 | 48 | pbyit) = 3.5/4.6 = 0.76

(x|t 11 05 56 P(x|t) = 1.6/5.6 = 0.29

(Y[t 35 ') P(y|t) = 4.0/5.6 = 0.71

P(x|t) = 2.1/6.6 = 0.32

L0 | 66 | pbyif)=45/6.6=068

Table 1:InBuence of pseudo-counts

Problem: The resulting model isverbtting the training data (OLook, | can explain this dataverbtting
perfectly! And nothing else...").

Solution: Again, use smoothing (aado the fractional counts before normalizing) and stop after a
maximum amount of iterations (usually 50). This will prevent the data from being exactly modeled.

Problem: Ties. All transition options leaving from one node are equally good. EM doesméx
take a stance and just leaves all of them as is.
Solution: Start out randomly to avoid ties, and do restarts. This way, you can break the ties.

8 Useful Reading

If you want to read the original, go for Dempster/Laird/Rubin (1977).

Rabiner/Juang (1986) is a general overview over parameter estimation, but very math-heavy. Man-
ning/SchYtze (2000) has a chapter on EM, based on clustering, but with an eye on other NLP appli-
cations. One of the most famous implementations for NLP is the tagging paper by Merialdo (1994),
which also gives you a good idea about the various parameters you can set.

If you want to know more about the Forward-Backward procedure of calculating alphas and betas,
check out Jason EisnerOs tutorial (Eisner, 2002), including a spreadsheet with the changing values.

The second edition of the Al handbook (Russell/Norvig, 2003, 724 B 733) has a comprehensive
section about EM.

Kevin Knight has written a very compelling introduction (Knight, 2009a). It is mainly about
Bayesian Inference, but explains EM very nicely. You might also want to check out his tutorials
for Carmel (Knight, 2009b), a software that helps you implement graphical models as automata and
train them with EM. Also, the workbook for MT (Knight, 1999) contains a useful section on EM.

9 Further...

Vaswani/Pauls/Chiang 2010 show how usingnormalization can lead to smaller models and a,
sparser distribution, which improves language related tasks a lot, because it creates a more ZfspalFation
distribution (see Hovy etal. 2011 for another application).

If you want to get deeper into the matter, you could look iEM with features (Berg- EM with
Kirkpatrick etal., 2010). Instead of just using conditional probabilities, which often cannot capfeseires

22

useful properties (or only when encoded as additional states), you can add all the features you like in
discriminative models (like word sufbxes or capitalization) and still do unsupervised learning.

Or explorestructural EM , which not only learns the parameter values, but also how many parasaeetural EM
ters there should be.

If you do any of these things, or if you have questions, comments, or criticism, send me a mailNI1Od
be dead curious to know!

Acknowledgements

Thanks to Kevin Knight and David Chiang for the basics, Congxing Cai, Karl-Moritz Hermann, and
Eduard Hovy for useful comments, and Ashish Vaswani, Victoria Fossum, and Taylor Berg-Kirkpatrick
for many enlightening discussions.

References

BERG-KIRKPATRICK, TAYLOR ET AL. (2010): Painless Unsupervised Learning with Features North American Chapter
of the Association for Computational Linguistics..

BisHoR, C.M. (2006):Pattern recognition and machine learningew York: Springer.

DEMPSTER ARTHUR P./LAIRD, NAN M./RUBIN, DONALD B. (1977): Maximum likelihood from incomplete data via the
EM algorithm In: Journal of the Royal Statistical Society. Series B (Methodological), 39, Nr. 1, 1D38.

EISNER, JASON (2002): An interactive spreadsheet for teaching the forward-backward algorithmProceedings of the
ACL-02 Workshop on Effective tools and methodologies for teaching natural language processing and computational
linguistics-Volume 1. Association for Computational Linguistics, 10D18.

Hovy, DIRK ETAL. (2011): Unsupervised Discovery of Domain-Specibc Knowledge from FexProceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Port-
land, Oregon, USA: Association for Computational Linguis#hRL: http://www.aclweb.org/anthology/
P11-1147 ', 1466D1475.

JOHNSON, MARK (2007): Why doesnOt EM bnd good HMM POS-tagdersProceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL)., 296D305.

KNIGHT, K. (1999): A statistical MT tutorial workbookJHU Summer Workshop, 1999.

KNIGHT, K. (2009a):Bayesian Inference with Teafdo address in, http://www.isi.edu/natural-language/people/bayes-with-
tears.pdf.

KNIGHT, K. (2009b): Training Finite-State Transducer Cascades with Carr2éD9b.
MANNING, C.D./SCHtTZE, H. (2000): Foundations of statistical natural language processillyT Press.

MERIALDO, BERNARD (1994): Tagging English text with a probabilistic modéh: Computational linguistics, 20, Nr. 2,
155P171.

RABINER, L./JUANG, B. (1986):An introduction to hidden Markov models: IEEE ASSp Magazine, 3, Nr. 1 Part 1, 4D16.

RUSSELL, S.J./NDRVIG, P. (2003):Artibcial intelligence: a modern approacBnd edition. Upper Saddle River, NJ: Pren-
tice Hall.

VASWANI, ASHISHPAULS, ADAM/CHIANG, DAvID (2010): Efpcient optimization of an MDL-inspired objective function
for unsupervised part-of-speech taggihg Proceedings of the ACL 2010 Conference Short Papers. Association for
Computational Linguistics, 209D214.

23

http://www.aclweb.org/anthology/P11-1147
http://www.aclweb.org/anthology/P11-1147

O©CoO~NOULAWDNPR

A A D WOWWWWWWWWWWNDNDNNDNNNNNNRPRRPERPRERPEPERRRER
NPFPOOO~NOUPRARWNPFPOOONOURAARWNPFPOOONOUEE, WDNPEO

A Python Implementation

import scipy as sp
from collections import defaultdict
import time

sp.set _printoptions(precision = 3)

CONSTANTS

NINF = float(O-1e3030)
LINF = sp.log(NINF)
SMOOTHING = sp.log(0.1)
HARDNESS = 1.0/1.0
THRESHOLD = 0.00001
MAX_NUMITERATIONS = 40
logadd = sp.logaddexp

parameters
start = defaultdict(lambda : LINF)

P(xly) = emissions[y][x] - this allows to sum over all values given y

emissions = defaultdict(lambda : defaultdict(

transitions = defaultdict(

initialize
startfOVO] = sp.log(0.6)
startfONO] = sp.log(0.4)

emissions[OVO][OI0] = sp.log(0.5)
emissions[OVO][Ocan0] = sp.log(0.5)
emissions[ONO][0I0] = sp.log(0.5)

emissions[ONO][Ocand] = sp.log(0.5)

transitions[OVO][OVO] = sp.log(0.6)
transitions[OVO][ONO] = sp.log(0.4)
transitions[ONO][ONO] = sp.log(0.1)
transitions[ONO][OVO] = sp.log(0.9)

tags = [OVO, ONO]
examples = [
[Ocand, 010, Ocand],
[010, Ocand, Ocand]

lambda : defaultdict(

24

lambda : LINF))
lambda : LINF))

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

converged = False
old _data _likelihood = sp.log(0.0)
iteration = 1

repeat until convergence

(i.e., difference of data-log likelihood < THRESHOLD or MAX —NUMITERATIONS)

while not converged:
print O0=0+* 20
print “iteration %s" % (iteration)
print O=0+* 20
data _likelihood = sp.log(1.0)

clear counts

start _counts = defaultdict(lambda : SMOOTHING)
emission _counts = defaultdict(lambda : defaultdict(lambda : SMOOTHING))
transit _counts = defaultdict(lambda : defaultdict(lambda : SMOOTHING))

go through examples

for example in examples:
starttime = time.time()
N = len(example) * 2
M = len(tags)

T

forward pass

HHHHHEHHHHHHHH

alphali,j] = the probability of ending up with tag i at word j
alpha = sp.ones((M,N)) * NINF

for i, tag in enumerate(tags):
if tag in start
alphali][0] = start[tag]
if example[0] in emissions[tag]:
alphali][1] = alpha]i][0] + emissions[tag][example[0]]

for j in range(2, N, 2):
for i, tagl in enumerate(tags):
for k, tag2 in enumerate(tags):
if tagl in transitions[tag2]:
alphali,j] += P(t1]t2) * alphalk, j-1]
if alphali, j] == NINF:
alphali,j] = transitions[tag2][tagl] + alphalk,j-1]
else :
alphal[i,j] = logadd(alphali][j],

25

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

transitions[tag2][tag1]+alphalk,j-1])
if example[j/2] in emissions[tagl]:
alphali, j+1] = alpha]i, j] * P(word _j|tagl)
alphali,j+1] = alphali,j] + emissions[tagl][example[j/2]]

print "ALPHA:"
print sp.exp(alpha)

HHHH AR HHH R R
backward pass
HHHHAHHHH R
beta = sp.ones((M,N)) * NINF

initialize beta from the back
for i, tag in enumerate(tags):
betali][-1] = sp.log(1.0)
if example[-1] in emissionsltag]:
beta[i][-2] = beta[i][-1] + emissions[tag][example[-1]]

for j in range(N-3,0,-2):
for i, tagl in enumerate(tags):
for k, tag2 in enumerate(tags):
if tag2 in transitions[tagl]:
if betali,j] == NINF:
beta[i,j] = transitions[tagl][tag2] + beta[k,j+1]
else :
beta[i,j] = logadd(betali,j],
transitions[tagl][tag2] + betalk,j+1])
if example[j/2] in emissions[tagl]:
beta[i, j-1] = beta[i, j] + emissions[tagl][example[j/2]]

print "BETA:"
print sp.exp(beta)
print

sum of all paths through example

example _likelihood = reduce(logadd, alpha[:, -1])

print ~ "example likelihood: ", sp.exp(example _likelihood)
add example likelihood to data likelihood

data _likelihood += example _likelihood

HHHHHH R

26

133 # collect fractional counts #

134 HHHHAHHHHHH B

135 for i, tagl in enumerate(tags):

136 if tagl in start:

137 # if no smoothing, start from scratch, otherwise just add up

138 if start _counts[tagl] == sp.log(0.0):

139 start _counts[tagl] = startftagl] + betai, 0] - example _likelihood
140 else :

141 start _counts[tagl]=logadd(start —counts[tag1],

142 start[tag1]+beta[i,0]-example —likelihood)
143

144 for j, word in enumerate(example):

145 if word in emissions[tagl]:

146 if emission _counts[tagl][word] == sp.log(0.0):

147 emission _counts[tagl][word] = alphali, | *2] +

148 emissions[tagl][word] +

149 betali, (~ *2)+1] -

150 example _likelihood

151 else :

152 emission _counts[tagl][word]=logadd(emission _counts[tag1][word],
153 alphafi, j *2] +
154 emissions[tag1][word] +
155 beta[i, (j *2)+1] -
156 example _likelihood)
157

158 for k, tag2 in enumerate(tags):

159 if j < len(example)-1 and tag2 in transitions[tagl]:

160 if transit _counts[tagl][tag2] == sp.log(0.0):

161 transit _counts[tagl][tag2] = alphali, j *2+1] +

162 transitions[tagl][tag2] +
163 betalk, (j+1) *2] -

164 example _likelihood

165 else :

166 transit _counts[tagl][tag2]=logadd(transit —_counts[tag1][tag?],
167 alphali, j *2+1] +

168 transitions[tag1][tag2] +

169 betalk, (j+1) *2] -

170 example _likelihood)

171

172 print "%.5fsec" % (time.time()-starttime)

173 print

174

175 HHHH R H R R

176 # normalize counts #

177 HHHH R H R R

27

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

start _count _total = reduce(logadd, start —counts.values())
print "New START probabilities:"
print 0-0 = 20
for tag in start:
startftag] = start —countsftag] - start —count _total
print OP(%s) = %.2f0 % (tag, sp.exp(start[tag]))

print "New EMISSION probabilities:"
print O-0 » 20
for tag, words in emissions.iteritems():

emission _tag _total = reduce(logadd, emission —counts[tag].values())
for word in words:
emissions[tag][word] = emission —_counts[tag][word] - emission _tag _total

print OP(%s|%s) = %.2f0 % (word,tag, sp.exp(emissions[tag][word]))

print "New TRANSITION probabilities:"
print O-0 » 20
for tag, tag _—successors in transitions.iteritems():

transition _tag _total = reduce(logadd, transit —counts[tag].values())
for tag —successor in tag —successors:
transitions[tag][tag _successor] = transit —counts[tag][tag _successor]
- transition _tag —total
print OP(%s|%s) = %.2f0 % (tag _successor,
tag,
sp.exp(transitions[tag][tag —successor]))
print

print "CHANGE:"

print Oold: %.5f (%s)0 % (sp.exp(old —data _likelihood), old —data _likelihood)
print Onew: %.5f (%s)O % (sp.exp(data _likelihood), data _likelihood)
change = -(sp.exp(old _data _likelihood) - sp.exp(data _likelihood))

print "change: ",change

assert change > 0.0

if change <= THRESHOLD or iteration > MAX _NUMITERATIONS:
converged = True

old _data _likelihood = data _likelihood
iteration += 1

28

Notes

LANSWER:P(xly) = 7

2ANSWER:W is discrete is discrete, but binary, aridis boolean, and thus also binary.

SANSWER: We count the occurrences of each iBle NP V Pin a treebank and normalize by the number of times we
have seels.

4ANSWER: Exactly, CKY parsing... You are getting good at this!

SANSWER: We compute the distance between the cluster centroids and each point and assign it to the closest centroid.

SANSWER: We divideP(t) $P(w|t) = P(w) $P(t|w) by P(w)

"ANSWER: You already had your model and would not need EM. ..

8ANSWER: Because words tend to be ambiguous. What is the most likely tag for "can"? It depends. It could be NOUN,
VERB, or AUX. But what is the most likely tag if we see "the can"? Still VERB or AUX? Probably not... The context
disambiguates it. ThatOs why we want the transition probabilities.

9ANSWER: The probability that we end up with this sentence if we ran our model in generation mode.

1I0ANSWER: Well, Forward and Backward... What did you think? Though you could of course call Forward "Baum" and
Backward "Welch", but that seems a little unfair to Mr. Welch.

IIANSWER: Assigning each data point to one of the centroids (= the current model parameters).

12ANSWER: Because in both cases we walked through all possible paths of the lattice, summing them up.

I3ANSWER: The count of the two events together and the counts of the given part.

29

	Introduction
	Preliminaries
	Probabilities
	Where Probabilities Come From

	Graphical Models
	Bayes Nets
	Hidden Markov Models

	Example Uses of EM
	The Goal
	Implementation
	HMM as Lattice
	Dynamic Programming
	Putting It All Together
	Example Run

	Finally...
	Troubleshooting
	Useful Reading
	Further...
	Python Implementation

