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SUMMARY 

In compiling a patient record many facets are subject to errors of measurement. A 
model is presented which allows individual error-rates to be estimated for polytomous 
facets even when the patient's "true" response is not available. The EM algorithm 
is shown to provide a slow but sure way of obtaining maximum likelihood estimates 
of the parameters of interest. Some preliminary experience is reported and the 
limitations of the method are described. 
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1. INTRODUCTION 

WHEN a patient's history is taken by different clinicians, different replies may be obtained to 
the same question. This may occur for a number of reasons; perhaps slightly different wording 
is used in each case, or perhaps the question is one the patient finds difficult to answer satis- 
factorily and so changes his reply from time to time. Similarly, in classifying a facet (sign or 
symptom) for type, severity, extent or duration, the patient and the clinicians may have 
different interpretations of the underlying scale of measurement. Such facets are said to be 
subject to observer error in that the response recorded may not be the "true" response as 
defined by some standard description of the facet or as implied by a consensus of medical 
opinion. The consequences of observer error are investigated by Good and Card (1971), 
where it is shown that a fairly low rate of error can lead to a considerable loss of diagnostic 
information. 

In this paper we consider the problem of measuring observer error when the facet being 
recorded can take one of a finite number of values coded 1,2,...,J. Two objectives can be 
distinguished. In some situations it is of interest to measure the degree of observer agreement. 
Landis and Koch (I1977) give a general statistical methodology for the analysis of multivariate 
categorical data involving agreement among more than two observers. In fact the measurement 
of inter- and intra-observer agreement has received wide attention. Landis and Koch (1975a, b) 
give a review. 

There are situations, however, where the performance of individual observers is more 
relevant. Let _g,k) be the probability that an observer, k, will record value I given j is the 
true response. The probabilities 7(k), j = 1, . . , J, / = 1, ...,J are called the individual error-rates 
for the kth observer, although this set inclues 7 j = 1, ...,J, which are the probabilities that 
the observer records the true response in each of the J possible cases. Note that the error-rates 
are conditional probabilities where 

J 
E 7T.k) = 1 for each j and k, 
1=1 

j 

t Now at Maths Dept, The City University, Northampton Square, London EC1V OHB. 
4 Now at Maths Dept, University Park, Nottingham NG7 2RD. 
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ON OBSERVER VARIATION 21 

and these quantities are mathematically independent of the marginal distribution of the 
true response. 

Individual error-rates can be used to advantage in several situations: 
(i) Through a knowledge of his own performance, an observer is able to recognize those 

facets where he makes the most frequent misclassifications and so reduce the number of errors 
in the patient's record. For example, he may reword a question or devote more time to the 
measurement of a particular sign. In those circumstances where a facet is recorded on an 
ordinal scale, error-rates serve to indicate how one observer's interpretation of the scale may 
differ from the general consensus, and thus show the way the observer should modify future 
assessments. 

(ii) In the development of a data-base for purposes of diagnosis it is desirable to minimize 
errors of measurement. Knowledge of individual error-rates allows a contributor to that data- 
base to be monitored. 

(iii) In some situations it might be recognized that a particular facet is subject to consider- 
able observer error even when this is elicited by the most experienced clinicians. Nevertheless, 
it is highly desirable that this facet be accurately recorded and so, if several observers partici- 
pate, a consensus judgement can be obtained. This judgement may be a simple majority 
opinion or a weighted consensus where the weights are functions of the individual error rates. 
In the latter case, each observer's contribution to the consensus is determined by his previous 
performance in eliciting that facet. 

(iv) There has been recent interest in delegating certain tasks such as history-taking, 
which have traditionally been carried out by doctors, to ancillary personnel, or even to a 
computer terminal. It is important to know whether any loss (or gain) of accuracy is likely 
to ensue. 

Henceforth all discussion is with reference to a single facet. When the true response can 
be obtained by some independent means, e.g. passage of time, X-ray or eventual operation, 
then sensible estimates of individual error-rates can be calculated very easily. For example, 
one possible estimator is 

-,(k) number of times observer k records 1 when j is correct 
ji number of patients seen by observer k where j is correct ( 

However, in many cases the true response can never be ascertained. Estimation of individual 
error-rates when the true response is not available has been discussed by Dawid (1971) for a 
facet having just two responses-yes or no, or 0 or 1. In the next section we extend the analysis 
proposed by Dawid to a facet having several possible responses. Section 3 mentions some of 
the computational problems and the practical limitations of this method of analysis. Section 4 
gives an example. 

2. MAXIMUM LIKELIHOOD ESTIMATION 

Consider an experiment where K clinicians, indexed k = 1, ...,K, ask a single question of 
I patients indexed i = 1, ..., L Not all clinicians need see every patient and a clinician may 
question the same patient more than once. The answer received is one of J possible replies. 
Let n(k) be the number of times clinician k gets responses I from patient i. The object of the 
experiment is to measure the individual error-rates 7TJk) (j= 1, ...,J; I = 1, ...,J; k = 1, ...,K). 
It is assumed that 

(i) The responses given by a single patient to successive clinicians or to repeated 
questioning by a single clinician are independent, given the true response. Further, all patients 
respond independently. 

(ii) There is no patient-by-clinician interaction. For example, one clinician does not 
obtain a more helpful response from a patient than is given to other clinicians. 
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22 APPLIED STATISTICS 

The restrictive nature of these assumptions should be carefully noted in any application 
of the following analysis. In particular, in many studies there may be variables which intervene 
between the true response and the elicited responses and which, for each patient, are common 
to all clinicians. In the context of history-taking, such a variable might be the patient's vague 
memory of the true response. The assumption (i) above might more reasonably require 
independence of the responses given the true response and the intervening variables. However, 
assumptions (i) and (ii) are at present necessary if estimates of error rates are to be obtained. 

Case 1. True responses are available 
Let {T7j: j = 1, ...,J} be a set of indicator variables for patient i. If response q is the true 

response for this patient then Tiq-1 and T7j = 0 (jO q). Further, the patients in the experiment 
are considered to be a random sample from some population, where the probability that a 
patient drawn at random has true response j is pj (j = 1, ...,J). Typically these probabilities 
are unknown. 

Consider a single patient i and clinician k. Then, if q were the true response, the numbers 
of responses of each type actually obtained would be distributed according to a multinomial 
distribution and the likelihood would be proportional to 

171(T(c)na(k) 
11(ql 

As all clinicians elicit responses independently the likelihood for the responses of patient i 
when Tiq = I is 

K J 
n rI( Mpj,(k)k) 
k=1 1=1 

and unconditionally 

I Pj H 
T 

rk)nk)))e (2.1) L= k=1 1=1J 

That is, (2.1) is proportional to the probability of all the data (true class and responses) on 
patient i. It consists of a product of J terms, J- 1 of which equal 1 (as Tj- 0, j# q) and 
one term of the form 

p(responses obtained Tiq= l)p(T&q= 1). 

As the data from all patients are assumed to be independent, the likelihood for the full data is 

III 21( Pill j i (,7T(. )nil(k) T (2.2) 
,i =1 k= 11 

In (2.2) the quantities n .k), T; and possibly pj are all known. The maximum likelihood 
estimates can be calculated analytically, and we obtain estimators 

7rl= T. | E Tijn ~k. (2.3) j i 

The interpretation of (2.3) is simply equation (1.1). When the probabilities pj (j 1, ...,J) 
are unknown these can also be estimated: 

p= E Thj/. (2.4) 

We note, at this point, that when the individual error-rates {7Trk)} and the marginal probabilities 
{pj} are known but the true class of a given patient, i, is unknown, Bayes' Theorem may be used 
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ON OBSERVER VARIATION 23 

to obtain estimates of the indicator variables Tij (j = 1, ...,J). A priori, p(Ti7 = 1) = pj. If 
data are then collected from the patients and the counts n5k) are obtained, by Bayes' Theorem 

p(Tw = I I data) ocp(data I Tih = l)p(Tij = 1) 
K J 

oc I H (7.jk))ni(k)p1 
Ic-i 1=1 

where all terms not involving j are absorbed into the proportionality sign. Thus 

p(T = 1 I data) = II II (7r4(p)n( ph p/ I II (7f(k))n pee (2.5 
lc=i 1=1 Iq=i lci i-1 i 

Case 2. True responses are not available 
In this case the probability for the data observed on a single patient remains unchanged, 

given q is the true response. But as we do not know which response is the true response, 
unconditionally 

J K J 
p(data on patient i) oc Z p1 H H (7r(k))a(k) (2.6) 

J s1 kl I 1-1i 
Compare equations (2.6) and (2.1). In (2.1), as the T7 (j = 1, ...,J) were known, the distri- 
bution for the data on patient i was essentially multinomial. Equation (2.6) is a mixture of 
such multinomial distributions, the weights being the marginal probabilities pj ( = 1, ...,J). 
The likelihood for full data is therefore 

I /JK J\ 
HI (,Pfl fl()aI(I ( k)r (2.7) 

i=l 3 k=l 1-1 
Calculation of the maximum likelihood estimates for the p's and i's in (2.7) is a much more 
difficult task. Dawid (1971) discusses the problems in detail but explicit expressions com- 
parable to (2.3) and (2.4) cannot generally be obtained and numerical methods for the solution 
of simultaneous equations or function-maximization have to be employed. 

In the past, the numerical methods available have not been satisfactory because of the 
large number of unknown parameters involved. However, Dempster et al. (1977) describe a 
numerical method of maximum likelihood estimation which is ideally suited to this particular 
problem. In certain circumstances missing data preclude the straightforward maximum 
likelihood estimation of the parameters of interest. However, if these parameters are known 
the missing data can be estimated. An iterative procedure is therefore proposed. 

(i) Obtain some initial estimates of the missing data. 
(ii) Calculate the maximum likelihood estimates for the quantities of interest as if the 

missing data had been found. 
(iii) Now calculate new estimates of the missing data. 
(iv) Repeat steps (ii) and (iii) until both the maximum likelihood estimates and the missing 

data estimates converge. 
This procedure is known as the EM algorithm as each iteration consists of an Expectation 

(of missing data) step and a Maximization (maximum likelihood estimation) step. Dempster 
et al. give conditions under which the estimates obtained are those which should have been 
obtained if the quantities of interest had been estimated directly by maximum likelihood 
from the more complicated model which takes account of the missing data. 

If, in the problem at hand, the indicator variables {T7j; i = 1, ... ., I,] 1, ..,J} are treated 
as missing data then the conditions of the EM algorithm are satisfied. We therefore proceed 
as follows: 

(i) Take initial estimates of the T's. 
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(ii) Use equations (2.3) and (2.4) to obtain estimates of the p's and n's. 
(iii) Use equation (2.5) and the estimates of the p's and IT's to calculate new estimates of 

the T's. 
(iv) Repeat steps (ii) and (iii) until the results converge. 
In step (iii) the estimate of T>j is E(T>j I data) = p(Tij = I I data). That is, the estimate is 

expressed as a probability that the true response for patient i isj. Such probabilities may also 
be used as initial input in step (i). 

The final estimates of the p's and ii's are those values which maximize (2.7). The final 
estimates of the T's are the consensus probabilities for each patient from which the true 
response for each patient can be assessed. 

3. DISCUSSION 
A number of comments relating to the execution of the algorithm and the interpretation 

of the results should be made at this point. Clearly, in any application, the concept of a 
true response must be meaningful, either as a hypothetically observable quantity or as the 
consensus agreement of qualified medical opinion given complete information on the patient. 
Even so, when the true responses are not known, there is no unique way in which observer 
error-rates can be estimated as there is no way in which the observations recorded by clinicians 
can be judged to be sensible or even relevant to the true state of the patient. This is reflected 
in the model, which has the structure of a latent class model (Lazarsfeld and Henry, 1968), 
and thus suffers from the lack of identifiability characteristic of factor-analytic models. 
Specifically, the likelihood (2.7) remains unchanged for any relabelling of the j index, and so 
it follows from the symmetry of the equation that there areJ! sets of estimates which correspond 
to the global maximum. Some will be more sensible than others, and it should be sufficient 
to assume that the correct estimates are those where )> k) (ji( 1) for most k and j. 

Closely allied to the issue of identifiability is the question of initial estimates. One possi- 
bility is to assign Tij = l/J(i = 1, ...,I, j= 1, ...,J). However, this action should be avoided 
as the initial estimates of the p's and w's correspond exactly to the centre of symmetry in (2.7) 
-a saddle point-and, as noted by Dempster et al., the EM algorithm cannot converge from 
such a point. A second possibility is to use the data to calculate initial estimates. For 
example, one could use 

0Tj = Z n(k)/Z i n(k) (3.1) 
k k I 

as starting values. 
In practice, it is advisable to repeat the algorithm for several different sets of starting 

values. The EM algorithm is only guaranteed to converge to a local maximum and in situations 
where relatively few data are used to estimate a large number of parameters one must usually 
be content with chosing from a set of estimates corresponding to different local maxima on 
the basis of the magnitude of the likelihood. In our experience the starting values defined by 
(3.1) have been particularly useful in locating the best local maximum, if not the global 
maximum of interest. A maximum likelihood algorithm closely related to that above is given 
by Goodman (1974) who similarly advises on the use of several different starting values. 

Little is known at present about the accuracy of the estimates. It is suspected that the 
standard errors of each of the -T's and the p's are large and that these estimates are highly 
correlated. However, the large number of parameters makes the dispersion matrix difficult to 
obtain and, given that the maximum likelihood estimates will almost invariably lie on the 
boundary of the parameter-space, of limited usefulness. One approach has been to observe 
the stability of the estimates to the removal of individual patients or individual observers 
from the data. Our conclusion is that the Example below probably represents the smallest 

This content downloaded  on Thu, 17 Jan 2013 01:52:18 AM
All use subject to JSTOR Terms and Conditions



ON OBSERVER VARIATION 25 

experiment which will yield point estimates of any value unless the raw data indicate a very 
high level of agreement. 

One consequence of probability estimates which are either zero or one is that unrealistically 
accurate estimates of the T's are obtained. However, inspection of the final estimates of the 
T's during repeated computation of the error-rates can lead to a clear appreciation of the 
"true" class of each patient in the experiment. While the vast majority of the final estimates 
of the T's remain virtually unaltered as different local maxima are discovered, some T estimates 
change markedly indicating the "reclassification" of one or two patients. A similar feature 
is noticed when the algorithm is repeated following removal of cases. Thus it is very easy to 
establish which patients are well classified and for which patients the consensus is more 
uncertain. 

Dempster et al. prove that the algorithm exhibits first-order convergence. The significance 
of this result in our context depends largely on the proportion of cases in the data set where a 
consensus is not immediately obvious. If this proportion is substantial-say 30 per cent or 
more-a large number of iterations is usually required and repeated use of the algorithm 
becomes expensive. Nelder (1977) suggests that a substantial improvement is possible by 
exploring ahead along the apparent direction of convergence. This procedure has been used 
with good effect. 

Finally, it must be emphasized that the method of maximum likelihood estimation has 
few advantages other than tractability. For a model as highly parameterized as this, having 
(J- 1) (JK+ 1) parameters, it would be naive to expect any of the theoretical large sample 
optimality properties to hold. It would be desirable to develop other estimation methods 
free of the general criticisms and caveats given above and to allow for prior opinions about 
the relative accuracies of the various questions. One possibility is to express the n-'s as functions 
of a much smaller number of parameters and estimate these by maximum likelihood. We 
hope to present this method in a future paper. 

4. AN EXAMPLE 
In the pre-operative assessment of a patient an anaesthetist must decide whether a patient 

is fit enough to undergo a general anaesthetic. In the trial reported here a standard form was 
completed on 45 patients by an independent party and contained information reflecting the 

TABLE 1 

Assessments offitness for anaesthesia 

Observer Observer Observer 

Patient 1 2 3 4 5 Patient 1 2 3 4 5 Patient 1 2 3 4 5 

1 III I I 1 1 16 Ill 2 1 1 1 31 Ill I I I 1 
2 333 4 3 3 4 17 Ill 1 1 1 1 32 333 3 2 3 3 
3 112 2 1 2 2 18 1111 1 1 1 33 111 1 1 1 1 
4 222 3 1 2 1 19 222 2 2 2 1 34 222 2 2 2 2 
5 222 3 2 2 2 20 222 1 3 2 2 35 222 3 2 3 2 
6 222 3 3 2 2 21 222 2 2 2 2 36 433 4 3 4 3 
7 122 2 1 1 1 22 222 2 2 2 1 37 221 2 2 3 2 
8 333 3 4 3 3 23 222 3 2 2 2 38 232 3 2 3 3 
9 222 2 2 2 3 24 221 2 2 2 2 39 333 3 4 3 2 

10 232 2 2 2 3 25 ill 1 1 1 1 40 111i 1 1 1 1 
11 444 4 4 4 4 26 111i1 1 1 1 41 111 1 1 1 1 
12 222 3 3 4 3 27 232 2 2 2 2 42 121 2 1 1 1 
13 111 I I 1 1 28 ill 1 1 1 1 43 232 2 2 2 2 
14 222 3 2 1 2 29 ill 1 1 1 1 44 121 1 1 1 1 
15 121 1 1 1 1 30 112 1 1 2 1 45 222 2 2 2 2 
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26 APPLIED STATISTICS 

patient's state of health. These forms were then independently assessed by five anaesthetists 
who classified each patient on a 1 to 4 scale, these categories having previously been defined. 
Anaesthetist 1 assessed the forms a total of three times, each time separated by some weeks. 
The data are shown in Table 1. Table 2 gives the estimates of the marginal probabilities and 
the individual error-rates. A range of starting values were explored although those described 
by (3.1) yielded the best maximum in this instance. Table 3 gives the matrices of probabilities 
(pj VrW) for each observer. In many circumstances these incidence-of-error matrices are of 
more immediate interest than the error-rates. The sum of the diagonal elements of such a 
matrix yields an estimate of the probability of a correct allocation by an observer and, when 
the feature under consideration is measured on an ordinal scale as in this example, the sum 

TABLE 2 TABLE 3 

Maximum likelihood estimates Incidence-of-error probabilities 

Marginal probabilities 
Category: 1 2 3 4 

'40 *42 *11 '07 

Error-rates 
OBSERVER 1 OBSERVER 1 

Observed response: 1 2 3 4 Observed response: 1 2 3 4 

True response 1 '89 *11 *0 '0 True response 1 *36 '04 '0 '0 
2 '07 '88 '05 '0 2 '03 *37 '02 '0 
3 *0 '34 '66 '0 3 '0 '04 '07 '0 
4 0 0 *56 .44 4 '0 '0 '04 '03 

OBSERVER 2 OBSERVER 2 
Observed response: 1 2 3 4 Observed response: 1 2 3 4 

True response 1 '78 '22 '0 '0 True response 1 '31 '09 '0 '0 
2 *06 '84 '10 '0 2 '02 '27 '13 '0 
3 '0 '0 1.0 '0 3 '0 '0 *11 '0 
4 *0 '0 '0 1.0 4 '0 '0 '0 '07 

OBSERVER 3 OBSERVER 3 
Observed response: 1 2 3 4 Observed response: 1 2 3 4 

True response 1 10 '0 '0 '0 True response 1 '40 '0 '0 '0 
2 '12 .79 '09 '0 2 '05 *33 '04 '0 
3 *0 *40 *20 .4 3 '0 '045 '02 '045 
4 '0 '0 *67 *33 4 '0 '0 '05 '02 

OBSERVER 4 OBSERVER 4 
Observed response: 1 2 3 4 Observed response: 1 2 3 4 

True response 1 .94 *06 '0 '0 True response 1 '38 '02 '0 '0 
2 '05 '84 *11 '0 2 '02 *36 '04 '0 
3 '0 0 '80 '20 3 *0 '0 '09 '02 
4 *0 '0 *33 '67 4 '0 '0 *02 '05 

OBSERVER S OBSERVER 5 
Observed response: 1 2 3 4 Observed response: 1 2 3 4 

True response 1 1'0 '0 *0 '0 True response 1 '40 '0 '0 .0 
2 *16 *74 *10 '0 2 '07 *31 .04 *0 
3 '0 '21 '79 '0 3 '0 '02 '09 '0 
4 '0 '0 '33 '67 4 '0 '0 '02 '05 
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ON OBSERVER VARIATION 27 

of the elements below or above the diagonal reflect the observer's optimism or pessimism 
relative to the other observers in the trial. 

Table 4 gives the estimated probabilities for the T's for each patient. For most patients 
the posterior probability is 10 for a single response. In these cases the consensus appears 
obvious, but as mentioned above these results could be viewed with some suspicion. In fact, 

TABLE 4 

Final estimates of indicator variables for each patientt 

Category Category 

Patient 1 2 3 4 Patient 1 2 3 4 

1 1.0 0.0 0.0 0.0 24 0-0 1-0 0.0 0.0 
2 0.0 0.0 0.0 1.0 25 1.0 0.0 0.0 0.0 
3 0.0 1.0 0.0 0.0 26 1.0 0.0 0.0 0.0 
4 0.0 1.0 0.0 0.0 27 0.0 1.0 0.0 0.0 
5 0*0 1.0 0-0 0.0 28 1.0 0.0 0.0 0-0 
6 0.0 1.0 0.0 0.0 29 1.0 0.0 0.0 0.0 
7 0.986 0-014 0.0 0.0 30 0-999 0-001 0.0 0.0 
8 0.0 0.0 1.0 0.0 31 1.0 0.0 0.0 0.0 
9 0.0 1.0 0.0 0.0 32 0.0 0.0 1.0 0.0 

10 0.0 1.0 0.0 0.0 33 1.0 0.0 0.0 0.0 
11 0.0 0.0 0.0 1.0 34 0.0 1.0 0.0 0.0 
12 0.0 0.0 1.0 0.0 35 0.0 0-948 0-052 0.0 
13 1.0 0.0 0.0 0.0 36 0.0 0.0 0.0 1.0 
14 0.0 1.0 0.0 0.0 37 0.0 1.0 0.0 0.0 
15 1.0 0.0 0.0 0.0 38 0.0 0 021 0 979 0.0 
16 1.0 0.0 0.0 0.0 39 0.0 0.0 1.0 0.0 
17 1o0 0.0 0.0 0.0 40 1.0 0.0 0.0 0.0 
18 1.0 0.0 0.0 0.0 41 1.0 0.0 0.0 0.0 
19 0.0 1.0 0.0 0.0 42 1.0 0.0 0.0 0.0 
20 0.0 1.0 0.0 0.0 43 0.0 1.0 0.0 0.0 
21 0.0 1.0 0.0 0.0 44 1.0 0.0 0.0 0.0 
22 0.0 1.0 0.0 0.0 45 0.0 1.0 0.0 0.0 
23 0.0 1.0 0.0 0.0 

t Probabilities of 1P0 and 0 0 are correct to three decimal places. 

repeated trials suggest that patients numbered 2, 12, 14 and 38 are the only cases which are 
sensitive to small changes in error-rate estimates, and thus a definite statement of true class 
is possible in many cases where consensus is not apparent in the raw data. 
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