
24 May 2006 ACM QUEUE rants: feedback@acmqueue.com

In the 50 years since John McCarthy coined the term
artifi cial intelligence, much progress has been made toward
identifying, understanding, and automating many classes
of symbolic and computational problems that were once
the exclusive domain of
human intelligence. Much
work remains in the fi eld
because humans still sig-
nifi cantly outperform the
most powerful computers
at completing such simple
tasks as identifying objects
in photographs—some-
thing children can do even
before they learn to speak.

Software developers
with innovative ideas for
businesses and technolo-
gies are constrained by the
limits of artifi cial intel-
ligence. In today’s business
landscape where companies
are more cost-conscious
than ever, projects that
require a vast network of
humans are scrutinized
with a fi ne-tooth comb
and often scrapped because
the cost of establishing
and managing a network
of skilled people to do
the work outweighs the
value of completing it. If
software developers could programmatically access and
incorporate human intelligence into their applications, a
whole new class of innovative businesses and applications
would be possible. This is the goal of Amazon Mechani-
cal Turk:1 to give software developers and businesses the
power to use human intelligence as a core component of
their applications and businesses. With Amazon Mechani-
cal Turk, people are freer to innovate because they can

now imbue software with real human intelligence.
In 1769, Wolfgang von Kempelen built an automa-

ton that defeated many human opponents at chess.
Known as “The Turk,” the wooden mannequin toured

the United States and
Europe for many years,
defeating such famous
challengers as Benja-
min Franklin, Napolean
Bonaparte, and Edgar
Allen Poe.2 The secret to
the automaton was, of
course, a human chess
master hidden inside. Like
its namesake, Amazon’s
Mechanical Turk presents
a mechanical front to
conceal, or abstract, the
human processing power
and intelligence hidden
inside. Developers can use
the Amazon Mechanical
Turk Web services API to
submit tasks to the Ama-
zon Mechanical Turk Web
site, approve completed
tasks, and incorporate
the answers into their
software applications. To
the application, the trans-
action looks very much
like any remote procedure
call: The application sends

the request, and the service returns the results. In reality,
a network of humans fuels this “artifi cial artifi cial intel-
ligence” by coming to the Web site, searching for and
completing tasks, and receiving payment for their work.
This allows software developers to easily and economi-
cally build programs that tap into a worldwide, massively
parallel, Internet-scale human workforce on an incremen-
tal, as-needed basis.

New technology allows software

to tap real human intelligence.

AI
gets a
brain

ACM QUEUE May 2006 25 more queue: www.acmqueue.com

JEFF BARR and LUIS FELIPE CABRERA, AMAZON WEB SERVICES

AI
gets a
brain

26 May 2006 ACM QUEUE rants: feedback@acmqueue.com

GENESIS
Amazon identifi ed a number of internal
tasks that would be amenable to high-vol-
ume processing by a workforce composed of
individuals with particular skills. Some of the
initial tasks included the following:

Data improvement. Thousands of mer-
chants load data for millions of products
into Amazon’s catalog. This can lead to
confl icting, missing, or erroneous product
information. Human processing is the best
possible arbiter of confl icts after all conceiv-
able automatic checking has been done.

Japanese text orientation. Japanese text can be written
left to right or top to bottom. As part of Amazon’s effort
to create searchable indices from scanned images of book
content, the text recognition system must be informed
of the text direction. Anyone fl uent in written Japanese
can quickly and effi ciently glance at a scanned image and
identify the text direction.

Image Selection. A9’s BlockView image technology
aggregates millions of street-level images to create a scroll
able panoramic street view in the context of an online
business directory. After automatic processing has chosen
several candidate images, human intelligence is used to
choose the best possible image to represent each street
address and business.

These tasks, along with many others, shared a number
of common attributes:

High business value. Each task made a contribution to
Amazon’s asset base in a small yet measurable way. The
aggregate value of the completed task was high enough
to have a meaningful impact on the quality of Amazon’s
catalog or other digital assets.

High volume. The amount of work to be done was
high, often numbering in the millions or even tens of
millions of individual work units.

Self-contained. Each task was self-contained and
required little, if any, global context.

Human-centric. Each task could make good use of
human skills that are either impossible or prohibitively
expensive to automate fully.

Varied demand. The amount of work to be done
varied from day to day. There might be a surge of millions
of work units on a particular day. The next day might see
demand for an entirely different type of work. The vary-
ing levels and types of work ruled out simply adjusting
staffi ng levels on a day-by-day, task-by-task basis.

After examining these tasks (along with many others),
we realized several things. From the start there was defi -

nitely an abundance of Amazon-centric
tasks to be done. After some initial discus-
sions with potential industry partners,
it also became evident that many other
organizations had similar needs. There
was room for an automated system to
mediate between the computer and the
people doing the work: accepting requests
and payment information; fi nding and
managing the workforce; tracking progress,
payment, and reputation information;
performing quality control; and return-
ing results to the requesting organization.

Thus, Amazon Mechanical Turk was born out of real-
world requirements from Amazon and other potential
users of the system.

Key challenges in building this system included
scalability, reputation tracking, accountability, quality
control, and fl exibility.

Scalability. The system as envisioned would manage
millions or even tens of millions of in-process tasks per
day. Large volumes of work could arrive at any time, and
many workers could log in and address these tasks con-
currently. Scalability was a necessity.

Reputation tracking. Without a system to track and
control reputations of individual workers, the system
would provide no framework to recognize and reward
good workers. Reputation tracking was necessary to
provide a long-term incentive for workers to do the best
possible job.

Accountability. This is closely akin to reputation.
Individual workers must have an identity within the
system, and they need to recognize that their work is of
value to the requesting organization. On the other side
of the transaction, the requesting organization must be
accountable to the workers, managing quality control and
payments on a fair, equitable, and timely basis.

Quality control. This would ensure that requesting
organizations received work of acceptable accuracy for
their money.

Flexibility. This was to be a general-purpose system for
use by both Amazon and others. All potential users of the
system would want to effi ciently create and process tasks
of many different types, so fl exibility was paramount.

AMAZON MECHANICAL TURK
Amazon Mechanical Turk provides the interface for
computers to make requests of human beings. The
system provides SOAP3 and REST4 interfaces for creating
and managing work units, also known as HITs (human

AI
gets a
brain

ACM QUEUE May 2006 27 more queue: www.acmqueue.com

intelligence tasks). Software applications make calls
to Amazon Mechanical Turk’s Web service interface to
request that human beings perform tasks best suited to
human intelligence. These tasks include those just listed
and many others, such as translating paragraphs of text
from one language to another, describing a photograph,
transcribing podcasts, or identifying a sound. Human
beings capable of performing those tasks find, accept,
and complete them, and then register the results. The
requesting application is then notified when the tasks are
complete and results are available. Each task includes pay-
ment information, and the human being is paid as soon
as the work is found to be acceptable by the requesting
organization.

The Amazon Mechanical Turk system manages task
submission, assignment, and completion, matches
qualified people with tasks that require particular skills,
provides a feedback mechanism to encourage quality
work, and stores task details and results, all behind a Web
services interface.

The five key Mechanical Turk concepts are HITs, work-
ers, qualifications, assignments, and requesters.

HITs. Each HIT is a fine-grained task such as, “Is there
a dog in this picture?” or “Is this Japanese text vertical
or horizontal?” Each HIT can have any number (zero
or more) of associated qualifications. HITs are specified
using the Question Language and are ultimately rendered
as part of a Web-based user interface. HITs can present
text and graphical data to the worker and can accept the
worker’s responses using standard HTML form elements
such as text input fields, radio buttons, drop-down
menus, and check boxes.

Workers. The human beings who want to earn money
by working on HITs are called workers. Each worker is
presumed to have some skills that are of potential appli-
cability to Amazon Mechanical Turk HITs.

Qualifications. These are tests or assertions used to
ensure that only properly qualified workers have access
to certain HITs. Qualifications can verify that a particular
worker has a particular skill, such as the ability to read
French. Each HIT can have any number (zero or more) of
associated qualifications. They can also verify the worker’s
ability to perform other HITs at a desired rate of success.
Qualifications can be machine-graded against an answer
key or manually graded by the requester.

Assignments. When a worker decides to perform a
particular HIT, the HIT is said to be assigned to the worker.
The requester is able to specify the desired number of
assignments for each HIT. This feature can be used to
implement a quality control system using plurality. Note

that any given HIT will never be assigned to the same
worker more than once, regardless of the number of
assignments the requester has specified for the HIT.

Plurality is an important quality control mechanism
in the Amazon Mechanical Turk universe. Using plural-
ity, requesters can detect and protect themselves from
low-quality workers. Let’s say that the HIT contains an
image, and the question put to the worker is, “Is there a
dog in this picture?” To use Amazon Mechanical Turk to
get a high-quality answer to this question using plurality,
it is loaded into the system with a maximum assignment
count of 5. The system ensures that any particular worker
can see the HIT at most one time. As soon as a majority
of the workers (in this case, three out of five) agree on the
result, the requester can accept that result as the answer
and proceed. If no plurality emerges, this often means
that the HIT is ambiguous.

Requesters. The individuals or organizations with
work to be done are called requesters. They typically use a
software application to submit tasks on their behalf. This
application uses the Amazon Mechanical Turk’s Web ser-
vice interface to load the tasks and qualifications, approve
completed work, and retrieve results. Requesters must
also deposit payment information into their Amazon.com
account prior to loading tasks.

SYSTEM WORKFLOW
The requesters, qualifications, HITs, and workers all inter-
act at the Amazon Mechanical Turk Web site (http://www.
mturk.com). Let’s take a step-by-step look at how all of
this comes together.

Preparation. The requester starts by identifying some
work to be done and designing the HIT. Good-quality
HITs are self-contained, context-free, and expressible
using the system’s Question Language. The Question Lan-
guage allows for the following types of elements in the
questions: text; bulleted list; binary data with associated
MIME type; radio button; drop-down list; check box; and
multiple choice.

The requester defines the qualifications, also expressed
using the Question Language, and decides on the pay-
ment (price per assignment) for the workers. Requesters
can set the price to any value from 1 cent (US) on up.

Funding. The requester makes a deposit in an Ama-
zon account. This deposit must be sufficient to pay the
workers for all of the work to be loaded. Reliance on
a deposit in advance of the work protects the workers
against unscrupulous requesters who could otherwise get
work done without paying for it. Requesters must also
deposit an additional 10 percent over what they will pay

28 May 2006 ACM QUEUE rants: feedback@acmqueue.com

the workers; this represents Amazon’s fee for
operating the Mechanical Turk service.

Initialization. The requester’s application
makes a series of Web service calls to load the
qualifi cations and HITs into the Mechani-
cal Turk. As part of the response data from
each Web service call, the system returns
identifi ers for the requester to use as part of
the approval process. The HITs are available
immediately for workers to act upon.

Work. Workers periodically visit the
Amazon Mechanical Turk site to check for
work to be done. Publicity for new types
of HITs is also generated within the worker community
using a number of blogs5 and online discussion forums.
Workers look for HITs that are of interest to them, and
for which they can meet any qualifi cations. The workers
then endeavor to do the work, accepting HITs and return-
ing results to the system for approval. The system tracks a
multitude of statistics for each worker and each requester.

Approval. As soon as the requester has loaded a batch
of HITs into the system, it will begin polling for review-
able HITs—those where the requested number of assign-
ments have taken place and been submitted by workers.
Each polling cycle will return all such assignments to the
requester, who then performs any fi nal checking or other
quality control measures (perhaps using the plurality
model) and approves each acceptable assignment.

Finalization. As soon as the requester approves assign-
ments, the corresponding payments are released to the
workers. The requester is able to aggregate results from
the entire batch of HITs for use within the requester’s
own processing.

SYSTEM INTERFACE
As noted previously, the requesters interact with the
Amazon Mechanical Turk by means of its Web services
interface. Requesters typically build application programs
using popular languages such as C++, C#, Java, or PHP.
The application built by the requester effectively serves as
a bridge and a coordinator between the requester’s inter-
nal data and systems and the Amazon Mechanical Turk.
For example, if the requester were to use the Amazon
Mechanical Turk to process a number of graphical images,
the application would be responsible for copying those
images from the requester’s private storage into the HITs,
as well as for copying the answers or other information
provided by the workers back into other storage managed
or owned by the requester.

Each Web service request is signed using the HMAC

(keyed-hash message authentication code)
algorithm. HMAC is a cryptographic
hashing function used to authenticate the
request. By insisting on signed requests,
the Amazon system is able to know with a
high degree of confi dence that requesters
are making requests on their own behalf
rather than on someone else’s. Amazon
supplies each registered software developer
with access to the private and public keys
that are needed to sign the message. For
effi ciency reasons (HMAC is computation-
ally expensive), Amazon expects only

certain fi elds of each request to be signed.
Here are some of the more important Web service calls:

• CreateQualifi cationType. Creates a qualifi cation that can
be subsequently attached to any number of HITs.

• CreateHIT. Creates a new HIT given a title, description,
question data, and qualifi cation list.

• GetReviewableHITs. Returns the list of HITs that are
ready to be reviewed.

• GetAssignmentsForHIT. Returns the list of completed
assignments for a given HIT. This call is typically used
in conjunction with GetReviewableHITs to process all
assignments for all reviewable HITs.

• ApproveAssignment. Signifi es approval of a HIT assign-
ment performed by a worker and releases payment to
the worker.

• GetHIT. Returns the data that describes the HIT.
• DisposeHIT. Destroys all memory of a HIT.
• GrantQualifi cation. Attaches a particular type of qualifi -

cation to a worker, signifying that the worker has suc-
cessfully demonstrated a particular skill.

• NotifyWorker. Sends a notifi cation message from
requester to worker via the Amazon Mechanical Turk.

Potential requesters are able to use the Web services
interface to connect their applications and business logic
to the Amazon Mechanical Turk, making it an integral
part of their business workfl ow.

CHECKS AND BALANCES
Integral to the success of the Mechanical Turk concept is
a set of checks and balances that protect the system from
intentional or accidental misuse by workers or requesters.
A principal defensive tactic is the use of statistical mea-
sures. Statistics are kept per worker for such values as:
• Total number of HITs attempted
• Total number of HITs completed
• Total number of HITs accepted by the requesters
• Total number of HITs abandoned

AI
gets a
brain

ACM QUEUE May 2006 29 more queue: www.acmqueue.com

Additional statistics are tracked for each type of HIT
processed by each worker. Similar statistics are kept for
requesters, although they are not currently made avail-
able for external use.

POSSIBLE USES FOR THE MECHANICAL TURK
As a simple, efficient way to access an Internet-scale
workforce, the Amazon Mechanical Turk can be used
in an almost infinite number of different ways. Here’s a
sampling of some that we have collected to date. Some of
these are actual finished applications; others are ideas ripe
for the picking.

Podcast transcription. This has been implemented at
http://castingwords.com. The site handles the process
of accepting the podcast, selecting the episode(s) to be
transcribed, and accepting payment instructions. The
selected episodes are then mapped to HITs where they are
accessible to prequalified workers. The work in each HIT
consists of listening to a single podcast episode and gen-
erating a high-quality text transcript of the conversation.

Language translation. The system has been used for
English-to-French and French-to-English translation,
and can be used for any possible combination of natural
languages.

Catalog data improvement. Amazon has used the
system to perform a number of data improvement and
validation processes on its product catalog.

Data gathering. Several requesters are now using the
Amazon Mechanical Turk to collect and evaluate lists of
“Top 3” items (restaurants, theaters, and so forth) on a
city-by-city basis.

Image tagging. Given an image, the task is to enter
a small number of descriptive tags that characterize the
image.

Web site review. Given a link to a Web site, the task is
to review the site and answer a series of multiple choice
questions about it.

Marketing survey. The task is to answer a series of
qualifying questions and then take a marketing survey.

Sound verification. The task is to listen to a sound and
verify that it matches the description.

Facial image verification. The task is to compare two
facial images and decide if they depict the same person.

An important variant on most of these HITs is the use
of a secondary HIT to verify the first. For example, high-
quality translation of French to English has been imple-
mented using a pair of HITs. The first HIT is to translate
the text; the second is to examine the work to verify
the accuracy of the translation. These two HITs actually
require slightly different skill sets; many people who can

read and verify the accuracy of a translation are not nec-
essarily qualified to create a translation.

LOOKING TOWARD THE FUTURE
Existing businesses, as well as those now in the formative
stages, can look to the Amazon Mechanical Turk model as
an infrastructure component that will give them the abil-
ity to tap into an on-demand, Internet-scale workforce.
We look forward to seeing the creative applications and
business models that will be built around the system. Q

REFERENCES
1. The Mechanical Turk can be accessed at http://www.

mturk.com or aws.amazon.com/mturk.
2. Standage, T. 2002. The Turk: The Life and Times of

the Famous Eighteenth-Century Chess-Playing Machine.
Walker and Company.

3. http://www.w3.org/TR/soap/.
4. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.

htm.
5. http://www.mechturkblog.com is one of the many

blogs that appeared in the days and weeks following
the beta launch of the system.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JEFF BARR, as an evangelist for Amazon Web Services, is
focused on furthering awareness of the service among soft-
ware developers. Barr meets regularly with developers in the
U.S. and internationally to introduce Amazon Web Services
and to help them build businesses and applications with the
program’s services. He joined Amazon in 2002 as a senior
software developer.
LUIS FELIPE CABRERA is vice president of software devel-
opment for Amazon Web Services. Prior to joining Amazon
Web Services, Cabrera held several positions at Microsoft and
at IBM. He started his tenure at Microsoft as the architect
for storage management in the Windows Base Group. He
went on to become an early member in the Microsoft Web
Services Architecture group, where he developed a number
of distributed systems technologies for Web services. His last
assignment at Microsoft was in the SQL Server team as part
of the database mirroring feature. Cabrera spent 12 years
at IBM where he became a member of the IBM Academy
of Technology. Among the projects that he participated in
are QuickSilver, Starburst, and ADSM. Cabrera earned his
doctorate from the University of California at Berkeley where
he was also a professor of computer science.
© 2006 ACM 1542-7730/06/0500 $5.00

