
Exploring Iterative and Parallel
Human Computation Processes

Greg Little1, Lydia B. Chilton2, Max Goldman1, Robert C. Miller1

1MIT CSAIL
{glittle, maxg, rcm}@mit.edu

2University of Washington

hmslydia@cs.washington.edu

ABSTRACT
Services like Amazon’s Mechanical Turk have opened the door
for exploration of processes that outsource computation to
humans. These human computation processes hold tremendous
potential to solve a variety of problems in novel and interesting
ways. However, we are only just beginning to understand how to
design such processes. This paper explores two basic approaches:
one where workers work alone in parallel and one where workers
iteratively build on each other’s work. We present a series of
experiments exploring tradeoffs between each approach in several
problem domains: writing, brainstorming, and transcription. In
each of our experiments, iteration increases the average quality of
responses. The increase is statistically significant in writing and
brainstorming. However, in brainstorming and transcription, it is
not clear that iteration is the best overall approach, in part because
both of these tasks benefit from a high variability of responses,
which is more prevalent in the parallel process. Also, poor
guesses in the transcription task can lead subsequent workers
astray.

Categories and Subject Descriptors
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Algorithms, Measurement, Performance, Design, Reliability,
Experimentation.

Keywords
Human Computation, Mechanical Turk, crowd sourcing,
collaborative writing, brainstorming, OCR

1. INTRODUCTION
Countless examples on the web demonstrate the power of having
a system outsource computation tasks to human workers. Human
computation arguably wrote the world's largest encyclopedia. We
even used it to decipher the text in Figure 1. However, human

computation processes are still not well understood. In order to
make the most of this new technology, to make it more efficient,
and apply it to more problems, we need to break it down and
understand it better.

One difference we notice between human computation processes
on the web is between iterative and parallel. For instance, if we
look at how an article is written on Wikipedia, we often see an
iterative process. One person starts an article, and then other
people iteratively improve it by looking at what people did before
them and adding information, correcting grammar, creating a
consistent style, etc. On the other hand, designs on Threadless, a
t-shirt design site, are generally created in parallel. Many people
submit ideas independently, and then people vote to determine the
best ideas that will be printed on a t-shirt.

We are interested in understanding the tradeoffs between each
approach. The key difference seems to be that the iterative
process shows each worker the results from previous workers,
whereas the parallel processes asks each worker to solve a
problem alone. The parallel process can be parallelized because
no workers depend on the results of other workers, whereas the
iterative process must solicit contributions serially.

To study the tradeoffs between each approach, we create a simple
model wherein we can formally express the iterative and parallel
processes. We then run a series of controlled experiments,
applying each process to three diverse problem domains: writing
image descriptions, brainstorming company names, and
transcribing blurry text. These experiments are run using
Amazon's Mechanical Turk as a source of on-demand labor. This
allows us to run the experiments multiple times, increasing
statistical validity. Each process is coordinated automatically
using TurKit [11].

Figure 1: Mechanical Turk workers deciphered almost every

word of this heavily blurred passage: “Killer whales are
beautiful animals. I remember seeing these huge, beautiful,
black and white creatures jumping high into the air at Sea

World, as a kid.” (“beautiful” should be “smooth”)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD-HCOMP’10, July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0222-7 …$10.00

68

Our results show that iteration improves average response quality
in the writing and brainstorming domains. We observe an increase
in the transcription domain as well, but it is not statistically
significant, and may be due to other factors. In the case of
writing, the increase in quality comes from the ability of workers
to collaboratively write longer descriptions. We also observe a
few downsides for iteration. In the case of brainstorming, workers
riff on good ideas that they see to create other good names, but
the very best names seem to be generated by workers working
alone. In transcription, showing workers guesses from other
workers can lead them astray, especially if the guesses are self-
consistent, but wrong.

Overall, prototyping and testing these processes on Mechanical
Turk provides insights that can inform the design of new
processes. The contributions of this paper include:

 Model and design patterns for human computation processes
that coordinate small paid contributions from many humans
to achieve larger goals.

 A series of experiments that compare the efficacy of parallel
and iterative design patterns in a variety of problem domains.

 A discussion of the tradeoffs observed between the iterative
and parallel approaches.

This paper now proceeds with a discussion of related work. Then
we present our model of iterative and parallel processes, and
apply each process to three problem domains, discussing the
results of each in turn. We end with a generalized discussion of
our results, as well as proposals for future work.

2. RELATED WORK
Human computation in general has recently received a lot of
attention. Quinn and Bederson give a good overview of
distributed human computation systems [14]. Individual systems
have also been studied and explored in academic literature,
including Games with a Purpose [1] [2] [3], Wikipedia [5] [9],
and Mechanical Turk [7] [8] [13] [15] [16].

Researchers have also tried to break down and categorize human
computation, including Quinn and Bederson [14]. Their
aggregation dimension is most applicable to this paper. It asks
how work is coordinated and combined to achieve a final result.
Malone et al. [12] also break down collective intelligence systems
along several dimensions. They make a distinction between
workers working dependently and independently, which roughly
maps to our iterative and parallel processes. They also distinguish
between creation and decision tasks. For example, Threadless
uses a creation task to generate a bunch of designs, and then a
decision task to pick a design. We borrow these names, but apply
them at a lower level, e.g., a creation task for us refers to a single
worker generating a single design. This distinction is also made
by Kosorukoff [10] using the names innovation and selection.
Selection in this case comes from thinking of human computation
as a genetic algorithm, which is an applicable analogy to both our
iterative and parallel processes. However, we prefer a model that
allows for the expression of human computation that does not
resemble a genetic algorithm. Our model treats human
computation as a set of operators in addition to traditional
computation.

Iterative and parallel human computation processes have been
implemented in a number of places on the internet. Iterative
processes are seen in wikis and open source collaborations.
Parallel processes are seen in contest sites like Threadless and
news aggregation sites like Slashdot, reddit, and Digg, as well as
sites that collect content, like YouTube. However, all of these
sites are quite different, so it is hard to see a controlled
comparison between iterative and parallel processes just by
observing the web.

3. MODEL
We are interested in human computation processes which
coordinate small contributions from many humans to achieve
larger goals. For example, an algorithm might coordinate many
workers to write a description for an image. All of the creative
and problem solving power in these processes will come from
humans, e.g., humans will do the writing.

Typical user generated content, like image descriptions, comes in
a form that the computer does not understand. In order for the
human computation process to make decisions, it will need to ask
humans to evaluate, rate, or compare content such that the result
is a number, boolean, or other data representation that a computer
can readily process. This suggests a breakdown of the domain into
creation and decision tasks.

3.1 Creation Tasks
When a worker writes a description for an image, this is a creation
task. Creation tasks solicit new content: writing, ideas, imagery,
solutions. Tasks of this form tend to have few constraints on
worker inputs to the system, in part because the computer doesn't
understand the input. The goal of a creation task is to produce
new high quality content, e.g., a well written and informative
description for an image.

Many factors affect the quality of results. We are interested in
exploring the potential benefits of iteration, where each worker is
shown content generated by previous workers. The hope is that
this content will serve as inspiration for workers, and ultimately
increase the quality of their results.

3.2 Decision Tasks
If we have two descriptions for the same image, we can use a
decision task to let the process know which is best. Decision tasks
solicit opinions about existing content. Tasks of this form tend to
impose greater constraints on worker contributions, since the
computer will need to understand the contributions. The goal of a
decision task is to solicit an accurate response. Toward this end,
decision tasks may ask for multiple responses, and use the
aggregate. In our experiments, we use two decision tasks:
comparison and rating. The comparison task shows a worker two
items, and asks them to select the item of higher quality. The
order of items is always randomized in our comparison tasks.

The rating task shows a worker some content, and asks them to
rate the quality of the content, with respect to some goal, e.g.,
“Please rate the quality of this text as a description of the image.”
All rating tasks in this paper use a rating scale from 1 to 10.

69

3.3 Combining Tasks: Iterative and Parallel
Human computation processes combine basic tasks in certain
patterns. At this point, the patterns we explore are quite simple.
All of the processes in this paper follow one of two patterns:
iterative or parallel.

The iterative pattern consists of a sequence of creation tasks,
where the result of each task feeds into the next one. The goal is
to explore the benefits of showing workers content generated by
previous workers. If it is not easy to merge the results of creation
tasks, as is the case for image descriptions, then we place a
comparison task between creation tasks:

This comparison lets the computer make a decision about which
content to feed into the next task. In our experiments, we want to
keep track of the best item created so far, and feed that into each
new creation task.

The parallel pattern consists of a set of creation tasks executed in
parallel. The parallel pattern acts as a control in our experiments—
it is effectively the same as the iterative pattern, except that no
workers are shown any work created by others. If it is not easy to
automatically merge the results, then after all the results have been
generated, we employ a sequence of comparison tasks to find the
best result:

Our experiments also feed all subjective contributions into rating
tasks in order to compare the effectiveness of each process.

4. EXPERIMENTS
In this section, we describe three experiments run on Mechanical
Turk which compare the parallel and iterative processes in three
different problem domains: writing, brainstorming, and
transcription. Each domain was chosen because it solves a useful
problem, and we wanted the combination to span a number of
problem solving dimensions. For instance, the problems impose
different levels of constraints: the transcription task has a definite
answer, whereas the writing and brainstorming tasks are more
open ended. The domains also vary in the size of each unit of
work, ranging from single words to entire paragraphs.

4.1 Writing Image Descriptions
This experiment compares the parallel and iterative processes in
the context of writing image descriptions. The experiment is
inspired by Phetch [3], a game where humans write and validate
image descriptions in order to make images on the web more
accessible to people who are blind. This is a different approach to

the same problem that may be applicable to a greater variety of
writing domains.

Each process has six creation tasks, each paying 2 cents. Five
comparison tasks are used in each process to evaluate the winning
description. Each comparison task solicits five votes, each for 1
cent. The instructions for the creation tasks are shown in Figure 2.
The task asks a Mechanical Turk worker (turker) to describe the
image factually in at most 500 characters. A character counter is
updated continuously as the user types. The “Submit” button only
activates when the content of the text area has changed from the
initial text and there are at most 500 characters. Note that the
instruction about “using the provided text” appears only in
creation tasks that have text from a previous iteration to show.
This instruction is omitted in all the parallel tasks.

To compare the processes, we selected 30 images from
www.publicdomainpictures.net. Images were selected based on
having interesting content, i.e., something to describe. We then
ran both the parallel and iterative process on each image. For half

Iterative: This image shows a large white strike of
lightning coming down from a blue sky with the
silhouettes of tops of the trees and rooftop peeking from
the bottom. The sky is a dark blue and the lightening is a
contrasting bright white. The lightening has many arms
of electricity coming off of it. rated 8.7
Parallel: White lightning n [sic] a root-like formation
shown against a slightly wispy clouded, blue sky,
flashing from top to bottom. Bottom fifth of image
shows silhouette of trees and a building. rated 7.2
Figure 2: Turkers are asked to write a factual description
of an image. Turkers in the iterative condition are shown

the best description so far, while the parallel condition
always shows an empty text area. The resulting descriptions

from each process are shown for this image.

70

of the images, we ran the parallel process first, and for the other
half, we ran the iterative process first.

In order to compare the results from the two processes, we created
a rating task. Turkers were shown an image and a description, and
asked to rate the quality of the description as a factual description
of the image, on a scale of 1 to 10. We obtained 10 ratings for
each image description to compute an average rating.

Turkers were not allowed to participate in both processes for a
single image. They were also not allowed to rate descriptions for
images that they contributed any writing to. However, turkers
were allowed to contribute to multiple images, as well as rate
multiple descriptions for the same image.

Our hypothesis was that the iterative process would produce
better results. We reasoned that workers would be willing to
spend a constant amount of time writing a description, and they
could do more with that time if they had a description to start
from.

4.1.1 Results & Discussion
Figure 2 shows an example image, along with the resulting
description for both the iterative and parallel processes. In this
case, the iterative description is rated higher than the parallel
description. If we average the ratings of resulting descriptions in
each process for all 30 images, we get a small but statistically
significant difference in favor of iteration (7.9 vs. 7.4, paired t-test
T29 = 2.1, p = 0.04). Figure 3 shows what the result would have
been if we had run the process for n iterations. Note that the two
processes are identical when we use only one iteration.

It is worth noting that there is a correlation between description
length and rating: longer descriptions are given higher ratings,
accounting for about 30% of the variability in ratings according to
the linear regression in Figure 4 (R2 = 0.2981, N = 360,  = 0.005,
p < 0.0001). This makes sense since we asked for “factual
descriptions,” and longer descriptions can hold more facts and
details. The two circled outliers indicate cases of text copied from
the internet that was only superficially related to the image.

This correlation is relevant because the iterative process produces
longer descriptions, about 336 characters on average compared
with 241 characters in the parallel process. This difference is
enough to explain the difference we see in ratings. If we subtract
the ratings predicted by a linear model of description length, then
we are left with a residual rating of 0.37 for the iterative process,
and 0.39 for the parallel process. However, a t-test reveals no
statistically significant difference between these residual ratings
(p = 0.94), meaning that the difference we saw before was
probably due to description length.

However, note that the residual ratings are statistically
significantly positive (p = 0.014), suggesting that each process
produces descriptions that are rated higher than one might predict
based on the length alone. This may be attributable to the fact that
we have people vote between paragraphs, rather than simply
comparing their lengths.

One simple model for what is happening in the iterative process is
that it starts with a description of a certain length, and then
subsequent turkers add more content. On average, turkers add
about 25 characters in each iteration after the initial description.
However, the standard deviation is very large (160), suggesting
that turkers often remove characters as well. If we look more

closely at each of these instances, we can roughly classify their
modifications as follows:

 31% mainly append content at the end, and make only
minor modifications (if any) to existing content;

 27% modify/expand existing content, but it is evident
that they use the provided description as a basis;

 17% seem to ignore the provided description entirely
and start over;

 13% mostly trim or remove content;
 11% make very small changes (adding a word, fixing a

misspelling, etc);
 and 1% copy-paste superficially related content found

on the internet.

Note that most modifications (83%) keep some of the existing
content and structure, suggesting that these turkers may be doing
less work. However, the average time spent by turkers writing or
improving descriptions in each process is about the same, 211
seconds.

Figure 4: Descriptions are plotted according to their length
and rating. A linear regression shows a positive correlation

(R2 = 0.2981, N = 360,  = 0.005, p < 0.0001). The two circled
outliers represent instances of text copied from the internet.

Figure 3: The average image description rating after n

iterations (iterative process blue, and parallel process red).
Error bars show standard error. As we run each process for

additional iterations, the gap between the two seems to
enlarge in favor of iteration, where the gap is statistically

significant after six iterations (7.9 vs. 7.4, paired t-test T29 =
2.1, p = 0.04).

71

4.2 Brainstorming
This experiment compares the iterative and parallel processes in a
different domain, namely brainstorming company names.
Brainstorming is a popular process whereby many people
generate ideas, either individually, or in a group. This process is
well studied, and Taylor, et. al. [17] suggest that combining the
results of individual brainstorms is more effective than having
people brainstorm in a group. While group brainstorms typically
generate fewer unique names, we try to mitigate this effect by
programmatically enforcing that each worker contribute the same
number of unique names in each process.

Each process has six creation tasks, each paying 2 cents. The
instructions for these tasks are shown in Figure 5. The instructions
ask a worker to generate five new company name ideas based on
the provided company description. The “Submit” button only
becomes active when there is text in each of the five input fields.
The section that lists “Names suggested so far” only exists in the
iterative condition. This list contains all names suggested in all
previous iterations for a given company.

We fabricated descriptions for six companies. We then ran both
the iterative and parallel process on each company description. As
with the previous experiment, we ran the parallel variation first
for half of the companies, and the iterative first for the other half.
No turkers were allowed to contribute to both the iterative and
parallel process of a single company description.

In order to compare the results of these processes, we used the
rating technique discussed in the previous experiment to rate each
generated company name. Again, we solicited 10 ratings for each
company name, and averaged the ratings. Our hypothesis was that
the iterative process would produce higher quality company
names, since turkers could see the names suggested by other
people, and build on their ideas.

4.3 Results & Discussion
By coincidence, no turkers in the parallel condition suggested
duplicate names, resulting in 180 unique names for this condition.
We removed duplicate names in the iterative condition from our
data. They could have been prevented in JavaScript, and 13 of the
14 duplicate names came from the last three iterations for a single
company. This may have been due to a group of turkers working
together that collectively misunderstood the directions, or tried to
cheat (unfortunately we did not record IP addresses, so we do not
know if these turkers were collocated).

Figure 5 shows a fake company description, along with a sorted
sample of the names suggested for this company. The best rated
name generated in the iterative process is rated 7.3, compared
with 8.3 for the parallel process. In fact, the parallel process
generated the best rated name for 4 out of the 6 fake companies.

However, the average name generated in the iterative process is
rated higher (6.4 vs. 6.2). The significance of iteration becomes
clear in Figure 6, where we show the average rating of names
generated in each iteration of the iterative process. The red line
indicates the average rating of names in the parallel process. The
iterative process is close to this line in the first iteration, where
turkers are not shown any example names. The average rating
seems to steadily increase as turkers are shown more and more
examples (except for iteration four, discussed next). The last
iteration is statistically significantly higher than the parallel
process (6.7 vs. 6.2, two-sample T203 = 2.3, p = 0.02).

Iterative:  Easy on the Ears rated 7.3

 Easy Listening 7.1
 Music Explorer 7.1
 Right Choice Headphone 7.1
…
 Least noisy hearer 5.1
 Headphony 4.9
 Shop Headphone 4.8

Parallel:  music brain rated 8.3
 Headphone House 7.4
 Headshop 7
 Talkie 6.8
…
 company sell 4.3
 head phones r us 4.2
 different circumstances 3.7

Figure 5: Turkers are asked to generate five new company
names given the company description. Turkers in the

iterative condition are shown names suggested so far. The
highest and lowest rated names from both the iterative and

parallel processes are shown for this company.

Figure 6: Blue bars show average ratings given to names

generated in each of the six iterations of the iterative
brainstorming processes. Error bars show standard error.

The red stripe indicates the average rating and standard error
of names generated in the parallel brainstorming processes.
(See the text for a discussion of iteration 4, which appears

below the red line.)

72

Iteration four breaks the pattern, but this appears to be a
coincidence. Three of the contributions in this iteration were
considerably below average. Two of these contributions were
made by the same turker (for different companies). A number of
their suggestions appear to have been marked down for being
grammatically awkward: “How to Work Computer”, and “Shop
Headphone”. The other turker suggested names that could be
considered offensive: “the galloping coed” and “stick a fork in
me”.

Like the previous task, we did not observe a statistically
significantly difference in the time that turkers spent generating
names in each process: 202 seconds for iterative, and 178 seconds
for parallel (two-sample T70 = 1.1, p = 0.28).

4.3.1 Getting the Best Names
Although iteration seems to increase the average rating of new
names, it is not clear that iteration is the right choice for
generating the best rated names (recall that the parallel process
generated the best rated name for 4 of the 6 fake companies). This
may be because the iterative process has a lower variance: 0.68
compared with 0.9 for the parallel process (F-test, F180,165 = 1.32,
p = 0.036). The higher variance of the parallel distribution means
that the tail of the distribution does not shrink as quickly, and
must eventually surpass the iterative process. Figure 7 illustrates
this phenomenon, and shows the crossover point at a rating of
8.04. This suggests that the parallel process is more likely than the
iterative process to generate names rated 8.04 and above,
assuming that the names are normally distributed according to this
model.

Note that this model may not tell the whole story. The maximum
possible rating is 10, which suggests that Gaussian curves are not
the best model (since they do not have any bounds). A Beta
distribution may be more appropriate. This does not mean that the
effect we are seeing isn’t real, but it is worth further investigation.

One high level interpretation of this is that showing turkers
suggestions may cause them to riff on the best ideas they see, but
makes them unlikely to think too far afield from those ideas. We
did see some anecdotal evidence of people’s ideas being heavily
influenced by suggested names. For an online chat company, the
first turker suggested five names that all incorporated the word
“chat”. The next two turkers also supplied names that all
incorporated the word “chat”. The corresponding iterations in the
parallel process only used the word chat three out of fifteen times.
For another company, a turker used the word “tech” in all their
names, and subsequent turkers used the word “tech” seven times,
compared with only once in the corresponding parallel iterations.

This suggests some interesting questions to explore in future
work: does showing people name suggestions inhibit their ability
to generate the very best new name ideas? If so, is there anything
we can do in an iterative process that will help generate the best
names? Alternatively, is there any way we can increase the
variance in the parallel process, to have an even better chance of
generating the best names?

4.4 Blurry Text Recognition
This experiment compares the iterative and parallel processes in
the transcription domain. The task is essentially human OCR,
inspired by reCAPTCHA [4]. We considered other puzzle
possibilities, but were concerned that they might be too fun,
which could have the side effects discussed in [13]. Unlike the

previous experiments, we use sixteen creation tasks in both the
iterative and parallel processes, each task paying 5 cents.

Figure 8 shows an example blurry text recognition task. The
instructions are simply to transcribe as many words as possible,
and we place a textbox beneath each word for this purpose. In the
iterative condition, these textboxes contain the most recent guess
for each word. We also ask workers to put a ‘*’ in front of words
that they are unsure about. This is meant as a cue to future

Iterative: TV is supposed to be bad for you, but I am
watching some TV shows. I think some TV shows are
really entertaining, and I think it is good to be watched.
(94% correct)
Parallel: TV is supposed to be bad for you, but I like
watching some TV shows. I think some TV shows are
really advertising, and I think it is good to be
entertained. (97% correct)
Figure 8: Turkers are shown a passage of blurry text with

a textbox beneath each word. Turkers in the iterative
condition are shown guesses made for each word from

previous turkers. The resulting transcription from each
process is shown, with incorrect words struck out in red.

Figure 7: Gaussian distributions modeling the probability of
generating names with various ratings in the iterative (blue)
and parallel (red) processes. The mean and variance of each
curve is estimated from the data. The iterative process has a
higher average, but the parallel process has more variance

(i.e. the curve is shorter and wider). Note that in this model,
the parallel distribution has a higher probability of generating

names rated over 8.04.

73

workers that a word requires more attention. Note that this
instruction appears in the parallel tasks as well, even though no
workers see any other workers’ stars.

We composed twelve original passages. It was important to use
original text, rather than text obtained from the web, since turkers
could conceivably find those passages by searching with some of
the keywords they had deciphered.

We then ran each passage through an image filter. The filter
works on a pixel level. Each pixel in the new image is created by
randomly choosing a pixel near that location in the old image,
according to a 2-dimensional Gaussian. This is identical to the
lossy “blur” tool from some popular image editing programs. The
result is blurry text that is very difficult to decipher. Some words
appear to be entirely illegible on their own. The hope is that by
seeing the entire passage in context, turkers will be able to work
out the words. Note that we don’t need to pay any workers to rate
the results, since we can assess the accuracy of the results
automatically using the ground truth text from which the blurry
images were created.

We applied both the iterative and parallel process to each passage.
As before, each process was run first half the time, and no turkers
were allowed to participate in both processes for a single passage.
The final transcription of the blurry text is extracted from each
process on a word by word basis. We look at all the guesses for a
single word in all sixteen iterations. If a particular word is
guessed a plurality of times, then we choose it. Otherwise, we
pick randomly from all the words that tied for the plurality. Note
that other algorithms are possible, and we will have more to say
about this below.

Our hypothesis was that the iterative process would have a higher
probability of deciphering each passage, since turkers would be
able to use other people's guesses as context for their own
guesses. The analogy would be solving a cross-word puzzle that
other people have already started working on.

4.4.1 Results & Discussion
Figure 8 shows a passage, along with the transcription extracted
from both the iterative and parallel processes. In this case, the
parallel process does a slightly better job (97% of words
transcribed correct vs. 94%). When we average over all 12
passages, we fail to see a statistically significant difference
between each process (iterative 65% vs. parallel 62%, paired t-test
T11 = 0.4, p = 0.73).

If we look at the accuracy of each process after n iterations in
Figure 9, we see that both processes gain accuracy over the first
eight iterations, and then seem to level off. Note that the iterative
process appears to be above the parallel process pretty
consistently after the fourth iteration. The difference is greatest
after eight iterations, but is never statistically significant.

The results suggest that iteration may be helpful for this task.
However, it is also worth noting that iteration sometimes appears
to get stuck due to poor guesses early in the process. For instance,
one iterative process ended up with 30% accuracy after sixteen
iterations. The final result was very similar to the eighth iteration,
where most of the words had guesses, and they made a kind of
sense:

8th iteration: “Please do ask * anything you need *me. Everything
is going fine, there * * , show me then * * anything you desire.”

16th iteration: “Please do ask *about anything you need *me.
Everything is going fine, there *were * , show me then *bring *
anything you desire.”

Incorrect guesses have been crossed out in red. Here is the actual
passage: “Please do not touch anything in this house. Everything
is very old, and very expensive, and you will probably break
anything you touch.” Note that multiple turkers deciphered this
entire passage almost perfectly in the parallel process, suggesting
that progress was hampered by poor guesses rather than by
unreadable text. In fact, one turker left a comment alluding to this
possibility (but for a different passage): “It's distracting with the
words filled in--it's hard to see anything else but the words
already there, so I don't feel I can really give a good “guess” ”.

Note that in this experiment, we did see a statistically significant
difference in the time spent deciphering text. Turkers in the
iterative task spent less time, an average of 130 seconds,
compared with 159 seconds in the parallel task (two-sample T382
= -2.03, p = 0.043).

4.4.2 Extraction Algorithm
Although iteration appears to be marginally better, some of the
benefit may have to do with the algorithm we use to extract a
final answer from all the guesses. If we had a perfect algorithm,
one that could look at all the guesses for a particular word and
choose the correct guess if it existed, even if it was not the most
common guess, then the parallel process would do better: 76%
versus 71% for the iterative process. This difference is not
significant (p = 0.64), and only serves to cast greater doubt on the
benefit of iteration for this task.

This suggests that any benefit we see from iteration may have to
do with the fact that it has an implicit mechanism for multiple
turkers to vote on a single turker's guess. If a turker leaves a guess
alone, then they are implicitly voting for it. In the parallel

Figure 9: Blue bars show the accuracy after n iterations of the
iterative text recognition process. Red bars show accuracy for

the parallel process with n submissions. Error bars show
standard error. The overlap suggests that the processes may
not be different, or that we do not have enough power in our

experiment to see a statistically significant difference.

74

process, a word can only get multiple votes if multiple turkers
arrive at the same guess independently.

One way the parallel process could be improved would be using
other information to help pick out the best guesses. For instance, a
word may be more likely to be correct if it came from a turker
who made guesses for surrounding words as well, since the word
may be satisfying more constraints.

It may be possible to improve the iterative process as well by
randomly hiding guesses for certain words, in order to solicit
more options for those words. Also, we could show people
multiple options for a word, rather than just the most recent guess.

Although it is interesting to think of ways to improve the
algorithm for this process, our real hope was that this task would
be so difficult that a single turker could not accomplish it on their
own. In future work, it would be nice to explore a task that had a
higher level of difficulty, or impose a time limit to simulate
higher difficulty.

5. DISCUSSION
All of these experiments demonstrate success in performing
several relatively high-level creative and problem solving tasks,
using processes that orchestrate the efforts of multiple workers.
We also see that the breakdown into creation and decision tasks is
applicable to a diverse set of problem domains.

5.1 Tradeoff between Average and Best
In the brainstorming task, we saw a tradeoff between increasing
average response quality, and increasing the probability of the
best responses. Showing prior work increased the average quality
of responses, but reduced the variance enough that the highest
quality responses were still more likely to come from turkers not
shown any prior suggestions.

There is a sense in which this tradeoff exists in the other two tasks
as well. The writing task generates descriptions with a higher
average rating, but lower variance, when turkers are shown prior
work. Also, the transcription task increases the average frequency
of correct guesses for each word when turkers are shown a prior
guess, but it decreases the variety of guesses for each word.

However, an alternate explanation for the reduced variance is
simply that there is a maximum quality, so pushing the average
toward this barrier must eventually reduce the variance (e.g., if
the average rating reaches 10, then the variance must be 0). The
real question is whether the reduction in variance is enough to
exhibit the tradeoff we seem to observe in the brainstorming case.
We will need to employ more robust mathematical models to
make more progress on this front, since Gaussian distributions are
limited in how well they can model a bounded random variable.

Investigating this tradeoff further may be worthwhile, because if
it exists, then it implies two different alternatives for achieving
quality responses, depending on our target quality. If our target
quality is reasonably low, then we can increase the average,
whereas if it is very high, then we may do better to increase the
variance and find some method of detecting the high quality
responses when they arrive.

Note that we may be able to proactively increase the variance in
the brainstorming task, perhaps by showing people completely
random words (which may have nothing to do with the topic), in
order to get them thinking outside the proverbial box.

5.2 Not Leading Turkers Astray
In our experiments, showing prior work can have a negative effect
on quality by leading future workers down the wrong path. This
effect is most pronounced in the blurry text recognition task, and
may be an issue in other tasks of this form where puzzle elements
build on each other (like words in a crossword puzzle). Turkers
take suggestions from previous turkers, and try to make the best
guesses they can, but backtracking seems more rare.

This suggests that a hybrid approach may be better, where
multiple iterative processes are executed in parallel to start with,
and then further iteration is performed on the best branch.

6. FUTURE WORK
There are many directions for future work exploring human
computation processes on Mechanical Turk. First, it seems fruitful
to further explore the two basic building blocks: creation tasks
and decision tasks. For instance, there are many factors that may
influence creation tasks, including price, how much work is
expected, whether examples are shown, and whether prior work is
shown. We have only scratched the surface of exploring these
possibilities, but as these different elements are better understood,
it will be easier to design creation tasks with the desired balance
between the average quality and variance of responses.

Decision tasks also leave room for investigation. The basic goal in
our tasks has usually been to determine the best items in a set, but
there are a number of ways to achieve this, including absolute
ratings, pair-wise comparisons, and sorting multiple items in a
single task. There are even combinations of these elements that
may be useful, like having people sort items, but also provide
ratings. Again, this is a large space, with the promise of providing
useful knowledge to help optimize evaluation of subjective
content.

Another direction for future work is exploring new building
blocks. Even inside the paradigm of creation and decision tasks,
there is room for building blocks which sit somewhere in-
between. For instance, a creation writing task could ask a turker to
select which of two previous versions they want to start from
(where they are effectively voting for which of those is best).
Note that this could have the side effect of turkers selecting the
worse version from which to start, since it may be easier to
improve. Hence, these ideas need to be tested and validated.

Finally, the real creative potential in this space is exploring new
high-level processes for coordinating workers to perform better,
or achieve loftier objectives. For instance, in paragraph writing,
one can imagine breaking down the task into two steps. The first
step might have people brainstorm phrases or concepts that should
be included in a paragraph, and then these could be shown to the
people writing the actual paragraph.

One might also imagine writing something larger than a
paragraph through several steps: writing an outline, having
separate processes to write each paragraph from the outline, and
having another process to combine these results with transition
sentences into a complete essay.

The ultimate goal is to learn how to design processes on
Mechanical Turk that reliably and efficiently achieve their
objectives, and to push the boundaries of those objectives.

75

7. CONCLUSION
This paper compares iterative and parallel human computation
processes. In the iterative algorithm, each worker sees the results
from the previous worker. In the parallel process, workers work
alone. We apply each algorithm to a variety of problem domains,
including writing, brainstorming, and transcription. We use
Mechanical Turk and TurKit to run several instances of each
process in each domain. We discover that iteration increases the
average quality of responses in the writing and brainstorming
domains, but that the best results in the brainstorming and
transcription domains may come from the parallel process,
because it yields a greater variety of responses. We also see that
providing guesses for words in the transcription domain can lead
workers down the wrong path. These results provide insights that
can inform the design of new human computation processes.

8. ACKNOWLEDGMENTS
We would like to thank everyone who contributed to this work,
including Mark Ackerman, Michael Bernstein, Thomas W.
Malone, Robert Laubacher, and members of the UID group. This
work was supported in part by Xerox, by the National Science
Foundation under award number IIS-0447800, by Quanta
Computer as part of the TParty project, and by the MIT Center for
Collective Intelligence. Any opinions, findings, conclusions or
recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the sponsors.

9. REFERENCES
[1] von Ahn, L. Games With A Purpose. IEEE Computer

Magazine, June 2006. Pages 96-98.

[2] von Ahn, L., and Dabbish, L. Labeling Images with a
Computer Game. ACM Conference on Human Factors in
Computing Systems, CHI 2004. Pages 319-326.

[3] von Ahn, L., Ginosar, S., Kedia, M., and Blum, M.
Improving Accessibility of the Web with a Computer Game.
ACM Conference on Human Factors in Computing Systems,
CHI Notes 2006. pp 79-82.

[4] von Ahn, L., Maurer, B., McMillen, C., Abraham, D. and
Blum, M. reCAPTCHA: Human-Based Character
Recognition via Web Security Measures. Science, September
12, 2008. pp 1465-1468.

[5] Bryant, S. L., Forte, A. and Bruckman, A.. Becoming
Wikipedian: transformation of participation in a
collaborative online encyclopedia. GROUP 2005.

[6] Dai, P., Mausam, Weld, D. S. Decision-Theoretic Control of
Crowd-Sourced Workflows. AAAI 2010.

[7] Heer, J., Bostock, M. Crowdsourcing Graphical Perception:
Using Mechanical Turk to Assess Visualization Design. CHI
2010.

[8] Kittur, A., Chi, E. H., and Suh, B. 2008. Crowdsourcing user
studies with MTurk. CHI 2008.

[9] Kittur, A. and Kraut, R. E. 2008. Harnessing the wisdom of
crowds in wikipedia: quality through coordination. CSCW
'08. ACM, New York, NY, 37-46

[10] Kosorukoff A. Human based genetic algorithm. IlliGAL
report no. 2001004. 2001, University of Illinois, Urbana-
Champaign.

[11] Little, G., Chilton, L. B., Goldman, M., and Miller, R. C.
TurKit: Tools for Iterative Tasks on Mechanical Turk.
HCOMP 2009.

[12] Malone, T. W., Laubacher, R. and Dellarocas, C. Harnessing
Crowds: Mapping the Genome of Collective Intelligence.
MIT, Cambridge, 2009.

[13] Mason, W., Watts, D. J. Financial Incentives and the
"Performance of Crowds". HCOMP 2009.

[14] Quinn, A. J., Bederson, B. B. A Taxonomy of Distributed
Human Computation. Technical Report HCIL-2009-23
(University of Maryland, College Park, 2009).

[15] Snow, R., O'Connor, B., Jurafsky, D., and Ng, A. Y. Cheap
and fast---but is it good?: evaluating non-expert annotations
for natural language tasks. EMNLP 2008.

[16] Sorokin, A. and D. Forsyth. Utility data annotation with
Amazon MTurk. Computer Vision and Pattern Recognition
Workshops, Jan 2008.

[17] Taylor, D. W., Berry, P. C. and Block, C. H. Does Group
Participation When Using Brainstorming Facilitate or Inhibit
Creative Thinking? Administrative Science Quarterly, Vol.
3, No. 1 (Jun., 1958), pp. 23-47.

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

76

