
NETS 213: CROWDSOURCING
AND HUMAN COMPUTATION

Introduction to
Python

Professor Callison-Burch

For Loops

For Loops
o for <item> in <collection>:

<statements>

o If you’ve got an existing list, this iterates each item in it.
o You can generate a list with Range:

list(range(5)) returns [0,1,2,3,4]
So we can say:

for x in range(5):
print(x)

o <item> can be more complex than a single variable name.
for (x, y) in [('a',1), ('b',2), ('c',3), ('d',4)]:

print(x)

Iterators

Iterator Objects

o Iterable objects can be used in a for loop because they have an __iter__ magic
method, which converts them to iterator objects:

>>> k = [1,2,3]

>>> k.__iter__()
<list_iterator object at 0x104f8ca50>

>>> iter(k)
<list_iterator object at 0x104f8ca10>

Iterators

o Iterators are objects with a __next__() method:
>>> i = iter(k)
>>> next(i)
1
>>> i.__next__()
2
>>> i.next()
3
>>> i.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration
o Python iterators do not have a hasnext() method!
o Just catch the StopIteration exception

Iterators: The truth about for… in…

o for <item> in <iterable>:
<statements>

o First line is just syntactic sugar for:
1. Initialize: Call <iterable>.__iter__() to create an iterator

o Each iteration:
2. Call iterator.__next__() and bind <item>
2a. Catch StopIteration exceptions

o To be iterable: has __iter__ method
which returns an iterator obj

o To be iterator: has __next__ method
which throws StopIteration when done

An Iterator Class
class Reverse:

"Iterator for looping over a sequence backwards"
def __init__(self, data):

self.data = data
self.index = len(data)

def __next__(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

def __iter__(self):
return self

>>> for char in Reverse('spam'):
print(char)

Iterators use memory efficiently

Eg: File Objects
>>> for line in open(“script.py”): # returns iterator
... print(line.upper())
...
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(2 ** 3)

instead of
>>> for line in open(“script.py”).readlines(): #returns list
... print(line.upper())
...

Generators

Generators: using yield
o Generators are iterators (with __next()__ method)
o Creating Generators: yield

Functions that contain the yield keyword automatically return a generator
when called

>>> def f(n):

... yield n

... yield n+1

...

>>>

>>> type(f)

<class 'function'>

>>> type(f(5))

<class 'generator'>

>>> [i for i in f(6)]

[6, 7]

Generators: What does yield do?
o Each time we call the __next__ method of the generator, the method runs until it

encounters a yield statement, and then it stops and returns the value that was
yielded. Next time, it resumes where it left off.

>>> gen = f(5) # no need to say f(5).__iter__()

>>> gen

<generator object f at 0x1008cc9b0>

>>> gen.__next__()

5

>>> next(gen)

6

>>> gen.__next__()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

Generators
o Benefits of using generators

Less code than writing a standard iterator
Maintains local state automatically
Values are computed one at a time, as they’re needed
Avoids storing the entire sequence in memory
Good for aggregating (summing, counting) items. One pass.
Crucial for infinite sequences
Bad if you need to inspect the individual values

Imports

Import Modules and Files
>>> import math
>>> math.sqrt(9)
3.0

Not as good to do this:
>>> from math import *
>>> sqrt(9) # unclear where function defined

>>> import queue as Q
>>> q = Q.PriorityQueue()
>>> q.put(10)
>>> q.put(1)
>>> q.put(5)
>>> while not q.empty():

print q.get(),
1, 5, 10

Hint: Super useful for
search algorithms

Tip: if you ever get a
ModuleNotFoundError

then try pip install
module name

o pip is the The Python Package Installer
o It allows you to install a huge range of external libraries that have been packaged

up and that are listed in the Python Package Index
o You run it from the command line:

pip install package_name
o In Google Colab, you can run command line arguments in the Python notebook by

prefacing the commands with !:
!pip install nltk

Import and pip

Functions

Defining Functions
Function definition begins with def. Function name and its arguments.

def get_final_answer(filename):
"""Documentation String"""
line1
line2
return total_counter

...

First line with less
indentation is considered to be
outside of the function definition.

‘return’ indicates the
value to be sent back to the caller.

No declaration of types of arguments or result.

Function overloading? No.
o Python doesn’t allow function overloading like Java deos

Unlike Java, a Python function is specified by its name alone
Two different functions can’t have the same name, even if they have different
numbers, order, or names of arguments
But operator overloading – overloading +, ==, -, etc. – is possible using special
methods on various classes

o There is partial support in Python 3, but I don’t recommend it
Python 3 – Function Overloading with singledispatch

https://www.blog.pythonlibrary.org/2016/02/23/python-3-function-overloading-with-singledispatch/

Default Values for Arguments
o You can provide default values for a function’s arguments
o These arguments are optional when the function is called
>>> def myfun(b, c=3, d="hello"):

return b + c

>>> myfun(5,3,"bob")

8

>>> myfun(5,3)

8

>>> myfun(5)

8

o Non-default argument should always precede default arguments; otherwise, it
reports SyntaxError

Keyword Arguments
o Functions can be called with arguments out of order
o These arguments are specified in the call
o Keyword arguments can be used after all other arguments.

>>> def myfun(a, b, c):

return a – b

>>> myfun(2, 1, 43) # 1

>>> myfun(c=43, b=1, a=2) # 1

>>> myfun(2, c=43, b=1) # 1

>>> myfun(a=2, b=3, 5)

File "<stdin>", line 1

SyntaxError: positional argument follows keyword argument

*args
o Suppose you want to accept a variable number of non-keyword arguments to your

function.
def print_everything(*args):

"""args is a tuple of arguments passed to the fn"""

for count, thing in enumerate(args):

print('{0}. {1}'.format(count, thing))

>>> lst = ['a', 'b', 'c']

>>> print_everything('a', ’b', 'c')

0. a

1. b

2. c

>>> print_everything(*lst) # Same results as above

**kwargs
o Suppose you want to accept a variable number of keyword arguments to your

function.
def print_keyword_args(**kwargs):

kwargs is a dict of the keyword args passed to the fn

for key, value in kwargs.items(): #.items() is list

print("%s = %s" % (key, value))

>>> kwargs = {'first_name': 'Bobby', 'last_name': 'Smith'}

>>> print_keyword_args(**kwargs)

first_name = Bobby

last_name = Smith

>>> print_keyword_args(first_name="John", last_name="Doe")

first_name = John

last_name = Doe

Python uses dynamic scope
o Function sees the most current value of variables

>>> i = 10

>>> def add(x):

return x + i

>>> add(5)

15

>>> i = 20

>>> add(5)

25

Default Arguments & Memoization
o Default parameter values are evaluated only when the def statement they belong to is

first executed.
o The function uses the same default object each call

def fib(n, fibs={}):

if n in fibs:

print('n = %d exists' % n)

return fibs[n]

if n <= 1:

fibs[n] = n # Changes fibs!!

else:

fibs[n] = fib(n-1) + fib(n-2)

return fibs[n]

>>> fib(3)
n = 1 exists
2

Functions are “first-class” objects
o First class object

An entity that can be dynamically created, destroyed, passed to a function,
returned as a value, and have all the rights as other variables in the
programming language have

o Functions are “first-class citizens”
Pass functions as arguments to other functions
Return functions as the values from other functions
Assign functions to variables or store them in data structures

o Higher order functions: take functions as input

def compose (f, g, x):
return f(g(x))

>>> compose(str, sum, [1, 2, 3])
'6'

Classes and
Inheritance

Called when an object
is instantiated

Every method begins
with the variable self

Another member
method

Creating an instance,
note no self

Calling methods of an
object

Creating a class
class Student:

univ = "upenn" # class attribute

def _ _ init_ _ (self, name, dept):
self.student_name = name
self.student_dept = dept

def print_details(self):
print("Name: " + self.student_name)
print("Dept: " + self.student_dept)

student1 = Student("julie", "cis")
student1.print_details()
Student.print_details(student1)
Student.univ

Subclasses
o A class can extend the definition of another class

Allows use (or extension) of methods and attributes already defined in the
previous one.
New class: subclass. Original: parent, ancestor or superclass

o To define a subclass, put the name of the superclass in parentheses after the
subclass’s name on the first line of the definition.

class Nets213Student(Student):

o Python has no ‘extends’ keyword like Java.
o Multiple inheritance is supported.

Constructors: __init__
o Very similar to Java
o Commonly, the ancestor’s __init__ method is executed in addition to new

commands
o Must be done explicitly
o You’ll often see something like this in the __init__ method of subclasses:

parentClass.__init__(self, x, y)

where parentClass is the name of the parent’s class
Student.__init__(self, x, y)

Redefining Methods
o Very similar to over-riding methods in Java

o To redefine a method of the parent class, include a new definition using the same
name in the subclass.

The old code in the parent class won’t get executed.

o To execute the method in the parent class in addition to new code for some
method, explicitly call the parent’s version of the method.

parentClass.methodName(self, a, b, c)

The only time you ever explicitly pass self as an argument is when
calling a method of an ancestor.

So use myOwnSubClass.methodName(a,b,c)

Multiple Inheritance can be tricky
class A(object):

def foo(self):

print('Foo!')

class B(object):

def foo(self):

print('Foo?')

def bar(self):

print('Bar!')

class C(A, B):

def foobar(self):

super().foo() # Foo!

super().bar() # Bar!

Special Built-In
Methods and Attributes

Magic Methods and Duck Typing
o Magic Methods allow user-defined classes to behave like built in types

o Duck typing establishes suitability of an object by determining presence of methods
Does it swim like a duck and quack like a duck? It’s a duck
Not to be confused with ‘rubber duck debugging’

Magic Methods and Duck Typing

Example Magic Method
class Student:

def __init__(self, full_name, age):
self.full_name = full_name

self.age = age

def __str__(self):
return "I'm named " + self.full_name + " – age: " +

str(self.age)
...

>>> f = Student("Bob Smith", 23)

>>> print(f)

I’m named Bob Smith – age: 23

Other “Magic” Methods
o Used to implement operator overloading

Most operators trigger a special method, dependent on class

__init__: The constructor for the class.
__len__ : Define how len(obj) works.
__copy__: Define how to copy a class.
__cmp__ : Define how == works for class.
__add__ : Define how + works for class
__neg__ : Define how unary negation works for class

o Other built-in methods allow you to give a class the ability to use [] notation like an
array or () notation like a function call.

Pandas

Other Resources

Tons of good resources on YouTube

https://www.youtube.com/watch?v=_uQrJ0TkZlc

