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ABSTRACT 
This paper introduces privacy and accountability techniques 
for crowd-powered systems. We focus on email task man-
agement: tasks are an implicit part of every inbox, but the 
overwhelming volume of incoming email can bury im-
portant requests. We present EmailValet, an email client 
that recruits remote assistants from an expert crowdsourc-
ing marketplace. By annotating each email with its implicit 
tasks, EmailValet’s assistants create a task list that is auto-
matically populated from emails in the user’s inbox. The 
system is an example of a valet approach to crowdsourcing, 
which aims for parsimony and transparency in access con-
trol for the crowd. To maintain privacy, users specify rules 
that define a sliding-window subset of their inbox that they 
are willing to share with assistants. To support accountabil-
ity, EmailValet displays the actions that the assistant has 
taken on each email. In a weeklong field study, participants 
completed twice as many of their email-based tasks when 
they had access to crowdsourced assistants, and they be-
came increasingly comfortable sharing their inbox with 
assistants over time. 
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INTRODUCTION 
Email management means triaging a never-ending tide of 
incoming requests. New messages push important requests 
out of view, and those requests can be unintentionally 
missed [26, 38]. To avoid overlooking important messages, 
people spend large amounts of time carefully processing 
their inbox or triage by focusing only on high priority mes-
sages [6, 18, 35]. However, people often keep unfinished 
tasks in their inbox [38], and triaging is error-prone [35]. As 
a result, tasks are often mixed with other emails, get pushed 
down by new messages, become hard to find, and forgotten.  

Current approaches for handling email-based tasks are lim-
ited and/or expensive. Integrating task management directly 
into the email client [3, 8] or asking communicators to 
structure their requests [39] requires significant manual 
effort. Automatic techniques have shown some promise in 
identifying tasks in emails [12, 16, 19, 25], but they are not 
yet fully reliable [25] and require heavy-handed user inter-
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Figure 1. The EmailValet email client draws on crowdsourced expert assistants to transform a cluttered inbox into an organized 
task stream. Assistants are given limited, accountable access to the user’s inbox so that they may extract tasks from each email. 

 



Problems with email as a task management tool

• Never-ending stream of incoming requests

• New messages push important requests out of view

• Some important requests can be unintentionally missed

• People spend a lot of time carefully processing their inboxes or 
triaging to select important messages



Email Valet

• Targeted at people who receive a large volume of email

• Tries to stop bad practice of using tricks like marking an email as 
unread to flag that it has something actionable, since those 
techniques are unreliable



Email Valet

• Recruits personal assistants for you from oDesk

• Your personal assistant reads your email and creates todo
items for you

• Goal is to create an actionable task list so that things don’t 
get lost in large steam of email

• Combine advantages of PAs with the scalability and 
affordability of crowds workers



Crowdsourced Personal Assistants

• oDesk is “expert” crowdsourcing platform

• Assistants are shared across multiple people

• Increases employment for assistants, reduces costs for individual 
users



Executive Assistants

• Microsoft Outlooks allow users to delegate limited inbox access 
to assistants

• Focusing their boss’s attention on important messages

• Autonomously handle simple tasks

• Crowdsourcing bring assistants to new class of people – not just 
executives



Intial Interviews

• People are of two minds about recruiting remote assistants for 
managing personal information

• People want the help

• But they have concerns about giving strangers unfettered access



How people use email now

• 77% send email reminders to themselves

• 47% use their inbox as a to-do list

• 41% would be willing to use an online service helps with email task 
management



Privacy Concerns

• 38% were unwilling to share anything 

• 35% were only willing to share a few messages manually

• 26% were fine with automatic rules

• 4% were ready to share their entire inbox



Email Valet



Privacy Protections

• You can create a whitelist of messages that your assistant can see 
(starred, labeled “assistant”, messages you send to yourself)

• You can create a blacklist to block your assistant from seeing 
messages from certain people, or with certain keywords

• You can limit the assistant to only viewing your most-recent 
messages (default: 100)



Restricting Access

 

Accountability 
EmailValet offers three monitoring techniques. First, inbox 
icons show whether the assistant has processed an email 
and extracted a task (Figure 3a). Second, the detailed mes-
sage view lists all logged activities for that email: for ex-
ample, opening an email, sending a response, or creating a 
task (Figure 3c). Third, a user can view a complete chrono-
logical log of all an assistant’s actions (Figure 6). Logging 
doesn’t prevent abuse, but does leave “fingerprints” [37]. 
We anticipate this log’s primary benefit to be deterrence 
and peace of mind — like a security camera — rather than 
frequent monitoring by users. 

Access Control 
Assistants can only view a user’s mail through EmailValet. 
EmailValet, by default, restricts the assistant to a sliding 
window of the most recent 100 messages and search is dis-
abled. Users can provide whitelist and blacklist filtering for 
finer-grained control. Whitelist filters restrict the assistant’s 
view to particular labels or folders, such as starred messag-
es, Gmail’s Priority Inbox, or messages sent to oneself. Fur-
thermore, users can provide blacklist filters to exclude 
sensitive messages, such as emails from family, passwords, 
or financial information (Figure 4). 

These restrictions attempt to balance the assistants’ need to 
understand contextual connections with the user’s desire 
not to expose their whole history to the crowd. Assistants’ 
actions are also limited; EmailValet’s current policy pre-
vents assistants from deleting messages. 

Finally, EmailValet also integrates with automatic  
approaches. To illustrate this, with the EmailValet proto-
type, users can restrict assistant-visible emails to Gmail’s 
Priority Inbox. 

Feedback and Learning 
The tasks that assistants create may not always be the tasks 
that users want. Tasks mean different things to different 
users: this is one reason automated approaches often fail 
[19]. To provide assistants feedback, the simplest way for a 
user to remove a task is to decline it (Figure 1). EmailValet 
shows assistants which tasks were accepted or declined, and 
encourages users to add an explanatory comment to the 

assistant (Figure 5). To help assistants learn what they 
missed, they can see tasks that users create themselves. 

To frame discussions, users can leave an introductory note 
about their preferences. This note is especially helpful for 
providing new assistants with context and user-specific 
heuristics. For example, users may want to emphasize cer-
tain senders or ask the assistant to apply labels to their tasks 
(e.g., “put [Event] in front of every event”). 

Assistants and users can also open a chat window to clarify 
any confusion. While a few crowdsourcing systems provide 
limited interactive feedback with requesters [14], we are 
unaware of other crowd-powered systems that support in-
teractive worker conversation with end users. We have 
found that chat helps efficiently achieve common ground: 

Assistant:  Do you want me to create tasks from [name]? 
User: Yes, please. 
Assistant: Ok I will, I made one and it got declined so I 

just wanted to make sure. 

Multiple Users per Assistant 
Assistants can help many users simultaneously, increasing 
affordability for users and labor opportunities for assistants. 
To provide easy access to multiple accounts, assistants can 
switch between users with a drop-down menu. Awareness 
indicators on this menu show users with unread messages.  

FIELD STUDY 
A weeklong field study investigated whether EmailValet 
helps users complete tasks and whether its privacy and ac-
countability features satisfy users’ concerns. We found that 
EmailValet accurately extracted tasks from email, that users 
found value in the system for their task management, and 
that users became increasingly comfortable with EmailVal-
et’s privacy tradeoffs.  

Method 
We deployed EmailValet in a one-week field study, recruit-
ing twenty-eight participants using mailing lists at our uni-
versity. Six were MBA students and twenty-two were 
university students of other majors, mostly technical. We 
offered participants a $50 gift certificate. We hired three 
online assistants through the oDesk crowdsourcing market-
place: one from Illinois, two from California. Two were 
work-at-home mothers. Assistants were compensated at $8 
per hour to process all shared emails during the study. 

 
Figure 4. For privacy, users can specify rules for which emails 
will be visible to their assistant. 
 

 
Figure 5. The assistant’s view of the task stream. Feedback 
helps the assistant to learn the user’s intentions: accepted and 
rejected tasks, freeform text, and user-created tasks. 





Handing over control

• You control what actions your assistant is allowed to do:
• Create new task
• Delete emails
• Reply to emails



User’s view of tasks



Assistant’s view of tasks

 

Accountability 
EmailValet offers three monitoring techniques. First, inbox 
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Other feedback

• Users can leave notes for new assistants

• Ask assistant to prioritize certain senders

• Or add labels to tasks (“put [Event] in front of every event”)

• Assistants and users can also open a chat window to clarify any 
confusion



Accountability

• EmailValet displays a log of all of the actions that your assistant 
took, for each of the emails that they processed

• Does not prevent abuse but leaves “fingerprints” that reveal it

• May act as a deterrent



Accountability



Accountability

 

Participants began by authoring whitelists and blacklists 
that determined the assistants’ access control. Each  
participant was instructed to use EmailValet at least twice 
each day to process their new emails and tasks. At the con-
clusion of the study, participants completed a survey  
focused on EmailValet’s qualitative usefulness, privacy, 
and assistant quality. 

We ran a within-subjects experiment to investigate whether 
EmailValet helps users complete the tasks in their email. 
Participants rotated through three interface conditions. Fol-
lowing a one-day warm-up, each participant spent two con-
secutive business days in each condition: 

• Control: Participants could not see assistant-created tasks 
or create their own tasks.  

• Self: Participants could not see assistant-created tasks. 
However, they could create their own tasks. 

• Assistance: Participants could see assistant-created tasks 
and create their own tasks. Participants could give task 
feedback to their assistant. 

The order of conditions was randomized for each partici-
pant, in a Latin square manner. Participants could always 
read and write email. The assistant extracted tasks from 
emails in all three conditions. However, in the Control and 
Self conditions, the assistant did not receive feedback on 
tasks from the participant because the participant could not 
see their extracted tasks. At the end of each condition, par-
ticipants saw any previously-hidden tasks that the assistant 
created. To produce ground truth, participants then accepted 
or rejected these tasks, gave feedback, created any tasks the 
assistant missed, and marked whether or not they had com-
pleted each task. 

We measured the percentage of new tasks that the user 
marked completed while each condition was in effect. This 
metric combines the tasks that the assistant authored and 
the user accepted with the tasks that the user authored 
themselves. If the assistant’s tasks were hidden during the 
condition (e.g., Self or Control), we counted tasks that were 
accepted during the end-of-condition review. We manually 
merged any duplicate tasks that the user and assistant both 
created. Users and assistants may make extraction mistakes, 
so this metric may not represent every task in the inbox.  

We hypothesized that users would complete more email-
based tasks with EmailValet’s task extraction than when 
they must extract tasks on their own (Assistance > Self) or 

cannot extract any tasks (Assistance > Control). We further 
hypothesized that the discipline of self-managed task man-
agement would still produce some benefit: Self > Control. 

Results 
Of the 28 participants who filled out the final survey, 16 
consistently and successfully participated in all three condi-
tions and thus had measurable task completion rates. In this 
section, we analyze qualitatively and quantitatively: 1) the 
assistants’ accuracy at extracting tasks, 2) users’ behavior 
and feedback regarding EmailValet as a task support tool, 
and 3) users’ feedback to the privacy concerns and func-
tionality in EmailValet. Table 1 displays examples of assis-
tant-extracted tasks. 

Assistants’ Accuracy 
We measured the precision and recall of assistant-created 
tasks so that we could better understand how accurate the 
assistants were at extracting important tasks for users. 

Precision measures the percentage of assistant-created tasks 
that participants accepted. On average, users accepted 
71.6% of the tasks extracted by assistants. This ratio was 
very similar across all three assistants (σ  =  3.5%). Precision 
rose throughout the study, starting at 62.1% on the first day 
and ending with 84.8% on the last day. The rise in precision 
is most likely due to participants’ feedback regarding tasks 
and to the assistants learning more about their users. One 
assistant noted, “it has become easier to extract good and 
accurate tasks from my clients’ emails over time. I feel I 
have gotten to known my clients better and understand the 
conversations better”. 

The final survey asked, a free-response question: were the 
assistants’ tasks relevant, or just busywork? About two 
thirds of participants (19 of 28) found assistant-created 
tasks to be of value and worth completing. Notably, four of 
these participants praised the assistants’ creations as being 
on the same level as their own; one thought the assistant 
was even better than themselves (“they used more detail 
than I did”) and three lauded the assistants for extracting 

• Schedule to meet first week of September with Priya 
• Complete flyer by the end of the week 
• Print out flight information 
• Send International Student Advisor a scan of my I-20 
• Review Emily's ideas and if possible add onto it 
• Lunch with Al 

Table 1. Tasks extracted by assistants during the study. 

 
Figure 6. The log supports accountability by showing all of the assistant’s activities to the user. 



Study

• Do you think that having an assistant would increase your 
productivity?

• How would you measure that?



Weeklong Study



Study participants, Assistants

• 28 university students (6 MBAs, 22 tech)

• Participants were paid $50 gift certificate

• 3 online assistants hired through oDesk

• Paid $8 per hour to process all shared emails during the study



What was measured

• How many tasks that the assistant created were accepted by user
• In control and DIY groups, the user marked the hidden tasks at 

the end of the 2-day period to created ground truth

• How many tasks were completed during the 2 day period
• Manually merged the DIY tasks and the assistant tasks at the end



Precision

• 72% of assistant-created tasks were accepted by users

• Precision increased over time from 
62% on first day to 85% on the last day

“it has become easier to extract good and 
accurate tasks from my clients’ emails over 

time. I feel I have gotten to known my clients 
better and understand the conversations 

better” –assistant



Recall

• How many of the tasks were created by the assistant? How many of 
the user-created tasks did the assistant miss?

• Only measured on assisted-condition when users could add tasks 
in real time

• 69% recall. However, sometimes the user logged in before the 
assistant, so potential recall may be higher.



Free-form survey

• Were the assistants’ tasks relevant, or just busywork?

• 67%: valuable tasks worth completing

• Some said assistants were overeager, e.g. creating todos from 
mailing lists

• Still felt that it was easier to delete than create tasks



Free-form survey

• Were users confident that their assistants would not miss 
important tasks?

• 61% felt they could fully or almost fully rely on their assistant

• Most common cause of missing tasks was lack of contextual 
knowledge

“Many important tasks (that are not obvious) 
are not extracted.”



Did EmailValet increase productivity?

• Users found the assistants to be generally accurate, but did the 
system help those users manage their tasks?



Enthusiasm

• “any help in making sure everything gets done is greatly 
appreciated.”

• “What I need is an extra pair of eyes.”

• Assistant’s tasks were “like magic”: “very convenient and much 
easier than doing it myself.”



Contributions to EmailValet

• Crowdsourced expert assistants to support personal information 
management

• An email task management system with integrated feedback 
structure

• Empirical results indicate that assistants manage information 
accurately, enabling users to accomplish more



Limited Access in a Transparent Fashion

• Give assistants only as much access as they actually need

• Interface access boundaries transparent so users have an accurate 
model of what the assistant can and cannot do

• Audit log creates fingerprints of any possible transgressions



Economics of shared assistants

• Assistants worked for 70 hours total

• Processed 12k messages (~3/minute)

• Created 780 tasks (~7 per 100 emails)



Economics of shared assistants

• Each assistant could do ~1,400 messages per day if working full 
time

• Each user got about 40 messages per day

• Could support 36 users simultaneously

• Cost to users would be $1.78 per day



Possible extensions

• Support other delegated tasks

• Summarize messages

• Negotiate meeting times

• Draft/send replies



Would you let crowd workers read your email?
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ABSTRACT 
This paper introduces privacy and accountability techniques 
for crowd-powered systems. We focus on email task man-
agement: tasks are an implicit part of every inbox, but the 
overwhelming volume of incoming email can bury im-
portant requests. We present EmailValet, an email client 
that recruits remote assistants from an expert crowdsourc-
ing marketplace. By annotating each email with its implicit 
tasks, EmailValet’s assistants create a task list that is auto-
matically populated from emails in the user’s inbox. The 
system is an example of a valet approach to crowdsourcing, 
which aims for parsimony and transparency in access con-
trol for the crowd. To maintain privacy, users specify rules 
that define a sliding-window subset of their inbox that they 
are willing to share with assistants. To support accountabil-
ity, EmailValet displays the actions that the assistant has 
taken on each email. In a weeklong field study, participants 
completed twice as many of their email-based tasks when 
they had access to crowdsourced assistants, and they be-
came increasingly comfortable sharing their inbox with 
assistants over time. 
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INTRODUCTION 
Email management means triaging a never-ending tide of 
incoming requests. New messages push important requests 
out of view, and those requests can be unintentionally 
missed [26, 38]. To avoid overlooking important messages, 
people spend large amounts of time carefully processing 
their inbox or triage by focusing only on high priority mes-
sages [6, 18, 35]. However, people often keep unfinished 
tasks in their inbox [38], and triaging is error-prone [35]. As 
a result, tasks are often mixed with other emails, get pushed 
down by new messages, become hard to find, and forgotten.  

Current approaches for handling email-based tasks are lim-
ited and/or expensive. Integrating task management directly 
into the email client [3, 8] or asking communicators to 
structure their requests [39] requires significant manual 
effort. Automatic techniques have shown some promise in 
identifying tasks in emails [12, 16, 19, 25], but they are not 
yet fully reliable [25] and require heavy-handed user inter-
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Figure 1. The EmailValet email client draws on crowdsourced expert assistants to transform a cluttered inbox into an organized 
task stream. Assistants are given limited, accountable access to the user’s inbox so that they may extract tasks from each email. 

 



Latency



Crowds in the interface

• Tasks like email are reasonably asynchronous, so some delay is 
acceptable

• For other tasks, like Word Processing, we would like a rapid 
response

• Soylent and TurKit both suffered from a problem of latency



Latency in HCI is disastrous

• Users are not used to waiting, and will abandon interfaces that are 
slow to react

• Search engine usage decreases linearly as delays grow

• Ten seconds is the maximum delay before a user loses focus on an 
interaction



How can we 
solve the 

problem of 
latency?



VizWiz: Nearly Real-time Answers to Visual Questions

What color is this pillow? What denomination is 
this bill?

Do you see picnic tables 
across the parking lot?

What temperature is my 
oven set to?

Can you please tell me 
what this can is?

What kind of drink does 
this can hold?

(89s)    I  can¶t  tell.
(105s)  multiple shades 
of soft green, blue and 
gold

(24s)  20
(29s)  20

(13s)  no
(46s)  no

(69s)  it looks like 425 
degrees but the image 
is difficult to see.
(84s)  400
(122s) 450 

(183s)  chickpeas.
(514s)  beans
(552s)  Goya Beans

(91s)    Energy
(99s)  no can in the 
picture
(247s)  energy drink

Figure 2: Six questions asked by participants, the photographs they took, and answers received with latency in seconds.

the total time required to answer a question. quikTurkit also
makes it easy to keep a pool of workers of a given size contin-
uously engaged and waiting, although workers must be paid
to wait. In practice, we have found that keeping 10 or more
workers in the pool is doable, although costly.

Most Mechanical Turk workers find HITs to do using the
provided search engine3. This search engine allows users to
view available HITs sorted by creation date, the number of
HITs available, the reward amount, the expiration date, the
title, or the time alloted for the work. quikTurkit employs
several heuristics for optimizing its listing in order to obtain
workers quickly. First, it posts many more HITs than are
actually required at any time because only a fraction will ac-
tually be picked up within the first few minutes. These HITs
are posted in batches, helping quikTurkit HITs stay near the
top. Finally, quikTurkit supports posting multiple HIT vari-
ants at once with different titles or reward amounts to cover
more of the first page of search results.

VizWiz currently posts a maximum of 64 times more HITs
than are required, posts them at a maximum rate of 4 HITs
every 10 seconds, and uses 6 different HIT variants (2 titles
⇥ 3 rewards). These choices are explored more closely in the
context of VizWiz in the following section.

FIELD DEPLOYMENT
To better understand how VizWiz might be used by blind
people in their everyday lives, we deployed it to 11 blind
iPhone users aged 22 to 55 (3 female). Participants were re-
cruited remotely and guided through using VizWiz over the
phone until they felt comfortable using it. The wizard inter-
face used by VizWiz speaks instructions as it goes, and so
participants generally felt comfortable using VizWiz after a
single use. Participants were asked to use VizWiz at least
once a day for one week. After each answer was returned,
participants were prompted to leave a spoken comment.

quikTurkit used the following two titles for the jobs that it
posted to Mechanical Turk: “3 Quick Visual Questions” and
“Answer Three Questions for A Blind Person.” The reward
3Available at mturk.com

distribution was set such that half of the HITs posted paid
$0.01, and a quarter paid $0.02 and $0.03 each.

Asking Questions Participants asked a total of 82 questions
(See Figure 2 for participant examples and accompanying
photographs). Speech recognition correctly recognized the
question asked for only 13 of the 82 questions (15.8%), and
55 (67.1%) questions could be answered from the photos
taken. Of the 82 questions, 22 concerned color identifica-
tion, 14 were open ended “what is this?” or “describe this
picture” questions, 13 were of the form “what kind of (blank)
is this?,” 12 asked for text to be read, 12 asked whether a par-
ticular object was contained within the photograph, 5 asked
for a numerical answer or currency denomination, and 4 did
not fit into these categories.

Problems Taking Pictures 9 (11.0%) of the images taken
were too dark for the question to be answered, and 17 (21.0%)
were too blurry for the question to be answered. Although a
few other questions could not be answered due to the pho-
tos that were taken, photos that were too dark or too blurry
were the most prevalent reason why questions could not be
answered. In the next section, we discuss a second iteration
on the VizWiz prototype that helps to alert users to these par-
ticular problems before sending the questions to workers.

Answers Overall, the first answer received was correct in
71 of 82 cases (86.6%), where “correct” was defined as either
being the answer to the question or an accurate description
of why the worker could not answer the question with the
information contained within the photo provided (i.e., “This
image is too blurry”). A correct answer was received in all
cases by the third answer.

The first answer was received across all questions in an aver-
age of 133.3 seconds (SD=132.7), although the latency re-
quired varied dramatically based on whether the question
could actually be answered from the picture and on whether
the speech recognition accurately recognized the question
(Figure 4). Workers took 105.5 seconds (SD=160.3) on av-
erage to answer questions that could be answered by the pro-
vided photo compared to 170.2 seconds (SD=159.5) for those



Pre-recruit workers

• VizWiz tried to reduce latency by pre-recruiting worker

• Workers complete a series of assignments in on HIT

• The user’s request with the least responses gets put at the head 
of the queue



Know when work is imminent

61 seconds Start app, take picture

71 seconds Record the question

78 seconds Press send

221 seconds Wait for response



Maintain a work pool

• TurKit also experimented with maintaining a group of workers, 
even when there was no work

• Created dummy assignments from past assignments, to ensure 
work

• When a new request arrived a dummy was replaced with the real 
request

• Can be costly to constaintly maintain a pool



Retainer model

• Alternate to maintaining worker pool with dummy tasks

• Hire crowd workers in advance, and pay them a small amount to 
wait for work to come online

• All them to pursue other work while waiting

• Alert them when our task is ready with a popup box, and pay them 
for that work too



Goals of Retainer Model

1. Guarantee a fast response time

2. Be cheap enough to scale

3. Maintain response time after a long wait



Getting paid to wait

• Turkers were $0.005 – $0.01 per minute, scaled based on expected 
wait time

• Asked them to keep the tab open and told them that they were free to 
do other tasks while waiting

• Javascript alert when work was ready

• Optionally, offer a small bonus to reward quick responses

• If no work is ready at end of retention period, given them an old task 
to complete



Super-quantifiable HCI expriment

• Vary retainer time between 0.5, 1, 2, 5, 10, and 30 minutes

• Pay workers: 2¢, 3¢, 4¢, 7¢, 12¢, 32¢

• Measure time from Javascript alert appearing until they 
dismiss it



Response Time
 

 

Study 2: Alert Design 
While Study 1’s results are already good enough to get a 
crowd quite quickly, can we improve on them by changing 
the reason that workers would pay attention? Can we incen-
tivize the slow workers to move more quickly? 
We investigated design and financial incentives to shift the 
curve so that more workers came within the first 2–3 se-
conds. We used the 12¢ 10-minute retainer condition from 
Study 1, which exhibited a low completion rate and a slow-
er arrival rate. The alert condition functioned as in Study 1, 
with a Javascript alert and audio chime. Bonuses can be 
powerful incentives [19], so we designed a reward condi-
tion that paid workers a 3¢ bonus if they dismissed the alert 
within two seconds. Two seconds is short enough to be 
challenging, but not so short as to be out of reach. To keep 
workers’ attention on the page, we created a game condi-
tion that let workers optionally play Tetris during the wait-
ing period. Finally, to isolate the effectiveness of the Javas-
cript alert, we created a baseline condition that displayed a 
large Go button but did not use an audio or Javascript alert. 
We hypothesized that the bonus and game conditions might 
improve response time and completion rate. 
For Study 2, we implemented a between-subjects design by 
randomly assigning each worker to a condition for the same 
verb-selection task. We posted tasks for four hours per day 
over four days. Workers completed 1913 tasks — we re-
moved 90 for poor work quality. 
Results. Paying a small reward for quick reactions had a 
strong positive impact on response time (Figure 3). In the 
reward condition, 61% of workers responded within two 
seconds vs. 25% in the alert condition, and 74% responded 
within three seconds vs. 50% in the alert condition. Rough-
ly speaking, the ten-minute retainer with reward had similar 
performance to the two-minute retainer without reward. In 
addition, workers in the reward condition completed 2.25 
times as many tasks as those in the alert condition (734 vs. 

325), suggesting that the small bonus has a disproportion-
ately large impact on work volume. Predictably, the base-
line condition without the alert dialog performed poorly, 
with 19% returning within three seconds. The game was 
not very popular (5.7% of completed tasks cleared a row in 
Tetris), but had a small positive impact on reaction times. 
Retainer Model Discussion 
Our data suggest that the retainer model can summon a 
crowd two seconds after the request is made. In exchange 
for a small fee, the retainer model recalls 50% of its work-
ers in two seconds and 75% in three seconds. Though reac-
tion times worsen as the retainer time increases, a small 
reward for quick response negates the problem. Our exper-
iment commonly produced 10–15 workers on retainer at 
once, suggesting that users could fairly reliably summon a 
crowd of ten within three seconds. Applications with an 
early indication that the user will want help (for example, a 
mouseover on the icon or an “Are You Sure?” dialog) can 
eliminate even this delay by alerting workers in advance. 
The cost of the retainer model is attractive because it pays 
workers a small amount to wait, rather than spending mon-
ey to repeat old tasks. The cost of the retainer model de-
pends on the desired arrival time !, the empirical arrival 
distribution !(!""#$% ≤ !) as in Figure 2, and the desired 
workers !. The number of retainer workers ! needed is: 

! = !
!(!""#$% ≤ !) 

For example, to recruit 5 workers within 3 seconds in the 
ten-minute retainer with reward, the system should place 8 
workers on retainer (rounded from 7.8), then expect that 7 
will return to complete the task and 4 will earn rewards.  
Assuming that we set the retainer length longer than the 
expected time period between requests !, the hourly (60-
minute) cost of the retainer model depends on the retainer 
wage per minute !!, and the base cost for the task !!: 

 
Figure 3. A small reward for fast response (red) led workers 
in a ten-minute retainer to respond as quickly as those on a 
two-minute retainer without reward (Figure 2, red). N=1913. 

 Baseline Alert Game Reward 
Median  36.66 s 3.01 s 2.55 s 1.68 s 
3rd quartile — 6.92 s 5.01 s 3.07 s 
Completion 64.2% 76.5% 76.7% 85.5% 

Table 2. A tabular representation of Figure 2. 

 
Figure 2. For retainer times under ten minutes, a majority of 
workers responded to the alert within two seconds and 
three-quarters responded within three seconds. N=1442. 

 30 sec 1 min 2 min 5 min 10 min 30 min 
Median  1.77 s 1.77 s 1.91 s 2.18 s 3.34 s 10.32 s 
3rd quartile 2.44 s 2.39 s 3.46 s 3.75 s — — 
Completion 86.6% 87.2% 82.9% 75.1% 66.4% 49.4% 

Table 1. A tabular representation of Figure 1. 



Improving 10 minute retainer response time
 

 

Study 2: Alert Design 
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curve so that more workers came within the first 2–3 se-
conds. We used the 12¢ 10-minute retainer condition from 
Study 1, which exhibited a low completion rate and a slow-
er arrival rate. The alert condition functioned as in Study 1, 
with a Javascript alert and audio chime. Bonuses can be 
powerful incentives [19], so we designed a reward condi-
tion that paid workers a 3¢ bonus if they dismissed the alert 
within two seconds. Two seconds is short enough to be 
challenging, but not so short as to be out of reach. To keep 
workers’ attention on the page, we created a game condi-
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large Go button but did not use an audio or Javascript alert. 
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with 19% returning within three seconds. The game was 
not very popular (5.7% of completed tasks cleared a row in 
Tetris), but had a small positive impact on reaction times. 
Retainer Model Discussion 
Our data suggest that the retainer model can summon a 
crowd two seconds after the request is made. In exchange 
for a small fee, the retainer model recalls 50% of its work-
ers in two seconds and 75% in three seconds. Though reac-
tion times worsen as the retainer time increases, a small 
reward for quick response negates the problem. Our exper-
iment commonly produced 10–15 workers on retainer at 
once, suggesting that users could fairly reliably summon a 
crowd of ten within three seconds. Applications with an 
early indication that the user will want help (for example, a 
mouseover on the icon or an “Are You Sure?” dialog) can 
eliminate even this delay by alerting workers in advance. 
The cost of the retainer model is attractive because it pays 
workers a small amount to wait, rather than spending mon-
ey to repeat old tasks. The cost of the retainer model de-
pends on the desired arrival time !, the empirical arrival 
distribution !(!""#$% ≤ !) as in Figure 2, and the desired 
workers !. The number of retainer workers ! needed is: 
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For example, to recruit 5 workers within 3 seconds in the 
ten-minute retainer with reward, the system should place 8 
workers on retainer (rounded from 7.8), then expect that 7 
will return to complete the task and 4 will earn rewards.  
Assuming that we set the retainer length longer than the 
expected time period between requests !, the hourly (60-
minute) cost of the retainer model depends on the retainer 
wage per minute !!, and the base cost for the task !!: 

 
Figure 3. A small reward for fast response (red) led workers 
in a ten-minute retainer to respond as quickly as those on a 
two-minute retainer without reward (Figure 2, red). N=1913. 
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Figure 2. For retainer times under ten minutes, a majority of 
workers responded to the alert within two seconds and 
three-quarters responded within three seconds. N=1442. 
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Completion 86.6% 87.2% 82.9% 75.1% 66.4% 49.4% 
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Dramatic speedups

• No longer wait for minutes or hours

• Nearly zeros out wait time

• Approaches human limits on the cognitive recognize-act cycle 
and motor reaction times



Cost of retainer

• Cost of the retainer model is attractive because it pays 
workers a small amount to wait, rather than spending money 
to repeat old tasks

• Cost depends on the desired arrival time, and the empirical 
arrival distribution, and the desired number of workers



Instant-on Crowd

• What becomes possible if we can have access to 
workers in <=2 seconds?



Synchronous Crowds

• With the retainer model, we have guarantees about the 
arrival time for workers

• This applies not just to individual workers, but for groups of 
workers

• We can do tasks that require multiple workers interacting, 
or that composite results from multiple workers to get the 
task done even faster



Novel Applications with Synchronous Crowds

• Adrenaline - a camera application that selects a photo from 
an action video

• Puppeteer - a way of manipulating lots of movable digital 
puppets to create a scene

• A|B - a quick voting system for A/B testing (which font is the 
best?)



Video


