
NETS 213: CROWDSOURCING
AND HUMAN COMPUTATION

Crowdsourcing and
Human Computer
Interaction Design

Wizard of Oz in HCI

Wizard of Oz in HCI

Oz-like HCI in SciFi

AI is lacking compared to human
intelligence. Some people earn a living as
"ractors", interacting with customers in
virtual reality entertainments. Ractors are
more expensive than AI, so the only reason
to use them is because customers can tell
the difference. Virtual reality
entertainment has become one ongoing
Turing Test, and software is continuously
failing it.

Wizard of Turk?

• Can we make SciFi a reality with crowdsourcing?

• Last week we examined the possibility of using humans as a function call in
TurKit

• Can we use people in next generation interfaces for computers and mobile
devices?

• What challenges does that present?

Word Processing: Boring HCI?

• Word processing supports a complex cognitive activity

• Writing is difficult: even experts routinely make style, grammar and spelling
mistakes.

• Decisions like changing from past to present tense, or cutting 1/2 a page
require many transformations across a document

• Current software provides little support for such tasks

Soylent: A Word Processor with a Crowd Inside

• Use large crowd of editors ala Wikipedia to improve your own work

• Use people’s basic knowledge of English to edit the document to fix
errors

• Opens up many other possibilities:
• scan for superfluous words to trim
• update addresses with zip codes
• do things that Word cannot (false positives in spell check)

Soylent: A Word Processor with a Crowd Inside

• Implemented as a plugin to Microsoft Word using Microsoft Visual Studio
Tools for Office (VSTO)

• Makes calls to Amazon Mechanical Turk with TurKit

• Has a set of 3 special purpose modules designed for work processing
• Shortn
• CrowdProof
• The Human Macro

Shortn

• A text shortening service that cuts selected text down to 85% of its
original length typically without changing the meaning of the text
or introducing errors.

Shortening a paper to 10 pages

AI approaches

• Rewriting text to be shorter is a task that Natural Language Processing
researcher work on – including me and my students!

• The goal of “sentence compression” is to re-write text to be shorter
while preserving all of its meaning

AI approaches

• Deletion

• Paraphrasing

• Summarization

AI approaches

Congressional leaders reached a last-gasp agreement Friday
to avert a shutdown of the federal government, after days

of haggling and tense hours of brinksmanship.

AI approaches

Congressional leaders reached a last-gasp agreement Friday to avert
a shutdown of the federal government, after days of haggling and

tense hours of brinksmanship.

AI approaches

Congress agreed Friday to avert a shutdown of the federal
government, after days of haggling and tense hours of

brinksmanship.

Soylent’s Solution

Congressional leaders reached a last-gasp agreement Friday
to avert a shutdown of the federal government, after days

of haggling and tense hours of brinksmanship.

Shortn Interaction

• Selects the paragraph or section of text that is too long

• Press the Shortn button in the Word’s Soylent ribbon tab

• Soylent launches a series of MTurk Turk tasks and notifies user when
text is ready

• User launches the Shortn dialog box

Automatic clustering generally helps separate
different kinds of records that need to be edited
differently, but it isn't perfect. Sometimes it creates
more clusters than needed, because the differences
in structure aren't important to the user's particular
editing task. For example, if the user only needs to
edit near the end of each line, then differences at the
start of the line are largely irrelevant, and it isn't
necessary to split base on those differences.
Conversely, sometimes the clustering isn't fine
enough, leaving heterogeneous clusters that must be
edited one line at a time. One solution to this
problem would be to let the user rearrange the
clustering manually, perhaps using drag-and-drop to
merge and split clusters. Clustering and selection
generalization would also be improved by
recognizing common test structure like URLs,
filenames, email addresses, dates, times, etc.

Automatic clustering generally helps separate
different kinds of records that need to be edited
differently, but it isn't perfect. Sometimes it
creates more clusters than needed, because the
differences in structure aren't important to the
user's particular editing task. For example, if the
user only needs to edit near the end of each line,
then differences at the start of the line are largely
irrelevant, and it isn't necessary to split base on
those differences. Conversely, sometimes the
clustering isn't fine enough, leaving
heterogeneous clusters that must be edited one
line at a time. One solution to this problem
would be to let the user rearrange the clustering
manually, using drag-and-drop edits. Clustering
and selection generalization would also be
improved by recognizing common test structure
like URLs, filenames, email addresses, dates,
times, etc.

Automatic clustering generally helps separate
different kinds of records that need to be edited
differently, but it isn't perfect. Sometimes it creates
more clusters than needed, because the differences
in structure aren't important to the user's particular
editing task. For example, if the user only needs to
edit near the end of each line, then differences at the
start of the line are largely irrelevant, and it isn't
necessary to split base on those differences.
Conversely, sometimes the clustering isn't fine
enough, leaving heterogeneous clusters that must be
edited one line at a time. One solution to this
problem would be to let the user rearrange the
clustering manually, perhaps using drag-and-drop to
merge and split clusters. Clustering and selection
generalization would also be improved by
recognizing common test structure like URLs,
filenames, email addresses, dates, times, etc.

Automatic clustering generally helps separate
different kinds of records that need to be edited
differently, but it isn't perfect. Sometimes it
creates more clusters than needed, because the
differences in structure aren't relevant to a
specific task. Conversely, sometimes the
clustering isn't fine enough, leaving
heterogeneous clusters that must be edited one
line at a time. One solution to this problem
would be to let the user rearrange the clustering
manually, perhaps using drag-and-drop to
merge and split clusters. Clustering and
selection generalization would also be improved
by recognizing common test structure like URLs,
filenames, email addresses, dates, times, etc.

Automatic clustering generally helps separate
different kinds of records that need to be edited
differently, but it isn't perfect. Sometimes it creates
more clusters than needed, because the differences
in structure aren't important to the user's particular
editing task. For example, if the user only needs to
edit near the end of each line, then differences at the
start of the line are largely irrelevant, and it isn't
necessary to split base on those differences.
Conversely, sometimes the clustering isn't fine
enough, leaving heterogeneous clusters that must be
edited one line at a time. One solution to this
problem would be to let the user rearrange the
clustering manually, perhaps using drag-and-drop to
merge and split clusters. Clustering and selection
generalization would also be improved by
recognizing common test structure like URLs,
filenames, email addresses, dates, times, etc.

Automatic clustering generally helps separate
different kinds of records that need to be edited
differently, but it isn't perfect. Sometimes it
creates more clusters than needed, as structure
differences aren't important to the editing task.
Conversely, sometimes the clustering isn't fine
enough, leaving heterogeneous clusters that
must be edited one line at a time. One solution
to this problem would be to let the user
rearrange the clustering manually, perhaps using
drag-and-drop to merge and split clusters.
Clustering and selection generalization would
also be improved by recognizing common test
structure like URLs, filenames, email addresses,
dates, times, etc.

Automatic clustering generally helps separate
different kinds of records that need to be edited
differently, but it isn't perfect. Sometimes it creates
more clusters than needed, because the differences
in structure aren't important to the user's particular
editing task. For example, if the user only needs to
edit near the end of each line, then differences at the
start of the line are largely irrelevant, and it isn't
necessary to split base on those differences.
Conversely, sometimes the clustering isn't fine
enough, leaving heterogeneous clusters that must be
edited one line at a time. One solution to this
problem would be to let the user rearrange the
clustering manually, perhaps using drag-and-drop to
merge and split clusters. Clustering and selection
generalization would also be improved by
recognizing common test structure like URLs,
filenames, email addresses, dates, times, etc.

Automatic clustering generally helps separate
different kinds of records that need to be edited
differently, but it isn't perfect. Sometimes it
creates more clusters than needed, as structure
differences aren't important to the editing task.
Conversely, sometimes the clustering isn't fine
enough, leaving heterogeneous clusters that
must be edited one line at a time. One solution
to this problem would be to let the user
rearrange the clustering manually using drag-
and-drop edits. Clustering and selection
generalization would also be improved by
recognizing common test structure like URLs,
filenames, email addresses, dates, times, etc.

Length Reduction

• Reductions affect different parts of the text, so moving slider changes
different regions

• Removes ~15–30% in a single pass, and up to ~50% with multiple
iterations

• The algorithm preserves meaning, cutting only unnecessary language
and repetitions

• User (not Workers) must remove whole arguments or sections

Example Shortn: Blog

Print publishers are in a tizzy over Apple’s new iPad
because they hope to finally be able to charge for their

digital editions. But in order to get people to pay for
their magazine and newspaper apps, they are going to
have to offer something different that readers cannot

get at the newsstand or on the open Web.

3 paragraphs,
12 sentences,

272 words

Reduced to
83% length
of original

$4.57
187 workers

46–57 mins
per paragraph

Example Shortn: Academic Paper

The metaDESK effort is part of the larger Tangible
Bits project. The Tangible Bits vision paper, which

introduced the metaDESK along with and two
companion platforms, the transBOARD and

ambientROOM.

7 paragraphs
22 sentences

478 words

Reduced to
87% length
of original

$7.45264
workers

49–84 min
per paragraph

Example Shortn: Academic Paper
In this paper we argue that it is possible and desirable
to combine the easy input affordances of text with the

powerful retrieval and visualization capabilities of
graphical applications. We present WenSo, a tool that

which uses lightweight text input to capture richly
structured information for later retrieval and navigation in

a graphical environment.

5 paragraphs
23 sentences

652 words

Reduced to
90% length
of original

$7.47284
workers

52–72 min
per paragraph

Example Shortn: technical writing

Figure 3 shows the pseudocode that implements
this design for Lookup. FAWN-DS extracts two

fields from the 160-bit key: the i low order bits of
the key (the index bits) and the next 15 low order

bits (the key fragment).

3 paragraphs
13 sentences

291 words

Reduced to
82% length
of original

$4.84188
workers

132–489 min
per paragraph

CrowdProof

When the crowd is finished, Soylent calls out the edited
sections with a purple dashed underline. If the user clicks
on the error, a drop-down menu explains the problem and
offers a list of alternatives. By clicking on the desired alter-
native, the user replaces the incorrect text with an option of
his or her choice. If the user hovers over the Error Descrip-
tions menu item, the popout menu suggests additional
second-opinions of why the error was called out.

The Human Macro: Natural Language Crowd Scripting
Embedding crowd workers in an interface allows us to re-
consider designs for short end-user programming tasks.
Typically, users need to translate their intentions into algo-
rithmic thinking explicitly via a scripting language or im-
plicitly through learned activity [6]. But tasks conveyed to
humans can be written in a much more natural way. While
natural language command interfaces continue to struggle
with unconstrained input over a large search space, humans
are good at understanding written instructions.

The Human Macro is Soylent’s natural language command
interface. Soylent users can use it to request arbitrary work
quickly in human language. Launching the Human Macro
opens a request form (Figure 3). The design challenge here
is to ensure that the user creates tasks that are scoped cor-
rectly for a Mechanical Turk worker. We wish to prevent
the user from spending money on a buggy command.

The form dialog is split in two mirrored pieces: a task entry
form on the left, and a preview of what the Turker will see
on the right. The preview contextualizes the user’s request,
reminding the user he is writing something akin to a Help
Wanted or Craigslist advertisement. The form suggests that
the user provide an example input and output, which is an
effective way to clarify the task requirements to workers. If
the user selected text before opening the dialog, he has the
option to split the task by each sentence or paragraph, so
(for example) the task might be parallelized across all en-
tries on a list. The user then chooses how many separate
Turkers he would like to complete the task. The Human
Macro helps debug the task by allowing a test run on one
sentence or paragraph.

The user chooses whether the Turkers’ work should replace
the existing text or just annotate it. If the user chooses to
replace, the Human Macro underlines the text in purple and
enables drop-down substitution like the Crowdproof inter-
face. If the user chooses to annotate, the feedback populates

comment bubbles anchored on the selected text by utilizing
Word’s reviewing comments interface.

TECHNIQUES FOR PROGRAMMING CROWDS
This section characterizes the challenges of leveraging
crowd labor for open-ended document editing tasks. We
introduce the Find-Fix-Verify pattern to improve output
quality in the face of uncertain worker quality. Over the
past year, we have performed and documented dozens of
experiments on Mechanical Turk.5

Challenges in Programming with Crowd Workers

 For this project alone,
we have interacted with 8809 Turkers across 2256 different
tasks. We draw on this experience in the sections to follow.

We are primarily concerned with tasks where workers di-
rectly edit a user’s data in an open-ended manner. These
tasks include shortening, proofreading, and user-requested
changes such as address formatting. In our experiments, it
is evident that many of the raw results that Turkers produce
on such tasks are unsatisfactory. As a rule-of-thumb, rough-
ly 30% of the results from open-ended tasks are poor. This
“30% rule” is supported by the experimental section of this
paper as well. Clearly, a 30% error rate is unacceptable to
the end user. To address the problem, it is important to un-
derstand the nature of unsatisfactory responses.
High Variance of Effort
Turkers exhibit high variance in the amount of effort they
invest in a task. We might characterize two useful personas
at the ends of the effort spectrum, the Lazy Turker and the
Eager Beaver. The Lazy Turker does as little work as ne-
cessary to get paid. For example, when asked to proofread
the following error-filled paragraph from a high school
essay site,6

A first challenge is thus to discourage or prevent workers
from such behavior. Kittur et al. attacked the problem of

 a Lazy Turker inserted only a single character
to correct a spelling mistake. The change is highlighted:
The theme of loneliness features throughout many scenes in Of Mice and
Men and is often the dominant theme of sections during this story. This
theme occurs during many circumstances but is not present from start to
finish. In my mind for a theme to be pervasive is must be present during
every element of the story. There are many themes that are present most
of the way through such as sacrifice, friendship and comradeship. But in
my opinion there is only one theme that is present from beginning to
end, this theme is pursuit of dreams.

5 http://groups.csail.mit.edu/uid/deneme/
6 http://www.essay.org/school/english/ofmiceandmen.txt

Figure 3. The Human Macro is an end-user programming
interface for automating document manipulations. The left
half is the user’s authoring interface; the right half is a pre-
view of what the Turker will see.

Figure 2. Crowdproof is a human-augmented proofreader.
The drop-down explains the problem (blue title) and suggests
fixes (gold selection).

A human-powered spelling and grammar checker that
finds problems Word misses, explains the problems,

and suggests fixes

Challenges for Soylent?

• In Soylent, Turkers are directly editing your documents

• What are the major concerns when other people are editing your
documents?

High variance in user contributions

• Lazy workers – some workers do as little work as necessary to get
paid

• Eager beavers – some do too much work or give random things
that we didn’t ask for

Lazy Worker

The theme of loneliness features throughout many scenes in Of Mice
and Men and is often the dominant theme of sections during this

story. This theme occurs during many circumstances but is not
present from start to finish. In my mind for a theme to be pervasive is

must be present during every element of the story. There are many
themes that are present most of the way through such as sacrifice,

friendship and comradeship. But in my opinion there is only one
theme that is present from beginning to end, this theme is pursuit of

dreams.

Eager Beaver

The theme of loneliness features throughout many scenes in Of
Mice and Men and is often the principal, significant, primary,

preeminent, prevailing, foremost, essential, crucial, vital, critical
theme of sections during this story.

QC is hard

Agreement based QC?

QC through embedded gold standard answers?

The find-fix-verify pattern

• No clear way to embed gold standard control data into tasks of this type

• Find-fix-verify is a 3 step process to try to ensure higher quality results

• Meant to correct the imbalance of work between lazy workers and eager
beavers, and to reduce introduction of errors

Step 1: Find

• Identify passages that need improvement

• For proofreading: find at least 1 phrase or sentence that needs to
be edited

• Aggregate across many independent opinions

• Regions with agreement are more likely to be correctable

Step 2: Fix

• Send the selected regions to other Worker to correct

• Each task now consists of a constrained edit to an area of interest

• Workers can see the whole paragraph but only edit the selected
region

• 3-5 workers suggest alternate edits

Step 3: Verify

• Verify is a mechanism for performing quality control on the
suggested edits

• Randomize the order of the proposed changes, and ask other
Turkers to vote on the best one, or to flag poor suggestions

• Exclude workers who proposed the fixes, so they can’t vote on their
own work

Why use find-fix-verify?

• Why should tasks be split into independent Find-Fix-Verify stages?

• Why not let Turkers fix errors they find?

• Wouldn’t that be more efficient and cost effective?

• Does it solve problems with lazy workers? How?

Cost of find-fix-verify

Shortn Crowdproof

Find $0.55 $0.06

Fix $0.48 $0.08

Verify $0.38 $0.04

Total $1.41 $0.18

per paragraph per error

Crowdproof: ESL

However, while GUI made using computers be
more intuitive and easier to learn, it didn’t let

people be able to control computers efficiently.
Massesnis only can The masses only can use

the software developed by software companies,
unless they know how to write programs.

1 paragraph
8 sentences
166 words

Errors
caught:

5/12
$2.2638
workers 47 minutes

Crowdproof: Notes

Blah blah blah—This is an argument about whether
there should be a standard “nosql NoSQL storage” API
to protect developers storing their stuff in proprietary
services in the cloud. Probably unrealistic. To protect
yourself, use an open software offering, and self-host or
go with hosting solution that uses open offering.

2 paragraphs
8 sentences

107 word

Errors
caught:
8/14

$4.7279
workers 42–53 minutes

The Human Macro

• Macros usually require users to translate their intentions into
algorithms explicitly via a scripting language

• The human macro is a “Natural Language Crowd Scripting
Language”

• It allows the user to ask other people complete tasks like
formatting citations or finding appropriate figures

Like Siri but unrestricted

•

• Natural language interfaces still struggle with unconstrained input

• Humans are good at understanding written instructions

The Human Macro

When the crowd is finished, Soylent calls out the edited
sections with a purple dashed underline. If the user clicks
on the error, a drop-down menu explains the problem and
offers a list of alternatives. By clicking on the desired alter-
native, the user replaces the incorrect text with an option of
his or her choice. If the user hovers over the Error Descrip-
tions menu item, the popout menu suggests additional
second-opinions of why the error was called out.

The Human Macro: Natural Language Crowd Scripting
Embedding crowd workers in an interface allows us to re-
consider designs for short end-user programming tasks.
Typically, users need to translate their intentions into algo-
rithmic thinking explicitly via a scripting language or im-
plicitly through learned activity [6]. But tasks conveyed to
humans can be written in a much more natural way. While
natural language command interfaces continue to struggle
with unconstrained input over a large search space, humans
are good at understanding written instructions.

The Human Macro is Soylent’s natural language command
interface. Soylent users can use it to request arbitrary work
quickly in human language. Launching the Human Macro
opens a request form (Figure 3). The design challenge here
is to ensure that the user creates tasks that are scoped cor-
rectly for a Mechanical Turk worker. We wish to prevent
the user from spending money on a buggy command.

The form dialog is split in two mirrored pieces: a task entry
form on the left, and a preview of what the Turker will see
on the right. The preview contextualizes the user’s request,
reminding the user he is writing something akin to a Help
Wanted or Craigslist advertisement. The form suggests that
the user provide an example input and output, which is an
effective way to clarify the task requirements to workers. If
the user selected text before opening the dialog, he has the
option to split the task by each sentence or paragraph, so
(for example) the task might be parallelized across all en-
tries on a list. The user then chooses how many separate
Turkers he would like to complete the task. The Human
Macro helps debug the task by allowing a test run on one
sentence or paragraph.

The user chooses whether the Turkers’ work should replace
the existing text or just annotate it. If the user chooses to
replace, the Human Macro underlines the text in purple and
enables drop-down substitution like the Crowdproof inter-
face. If the user chooses to annotate, the feedback populates

comment bubbles anchored on the selected text by utilizing
Word’s reviewing comments interface.

TECHNIQUES FOR PROGRAMMING CROWDS
This section characterizes the challenges of leveraging
crowd labor for open-ended document editing tasks. We
introduce the Find-Fix-Verify pattern to improve output
quality in the face of uncertain worker quality. Over the
past year, we have performed and documented dozens of
experiments on Mechanical Turk.5

Challenges in Programming with Crowd Workers

 For this project alone,
we have interacted with 8809 Turkers across 2256 different
tasks. We draw on this experience in the sections to follow.

We are primarily concerned with tasks where workers di-
rectly edit a user’s data in an open-ended manner. These
tasks include shortening, proofreading, and user-requested
changes such as address formatting. In our experiments, it
is evident that many of the raw results that Turkers produce
on such tasks are unsatisfactory. As a rule-of-thumb, rough-
ly 30% of the results from open-ended tasks are poor. This
“30% rule” is supported by the experimental section of this
paper as well. Clearly, a 30% error rate is unacceptable to
the end user. To address the problem, it is important to un-
derstand the nature of unsatisfactory responses.
High Variance of Effort
Turkers exhibit high variance in the amount of effort they
invest in a task. We might characterize two useful personas
at the ends of the effort spectrum, the Lazy Turker and the
Eager Beaver. The Lazy Turker does as little work as ne-
cessary to get paid. For example, when asked to proofread
the following error-filled paragraph from a high school
essay site,6

A first challenge is thus to discourage or prevent workers
from such behavior. Kittur et al. attacked the problem of

 a Lazy Turker inserted only a single character
to correct a spelling mistake. The change is highlighted:
The theme of loneliness features throughout many scenes in Of Mice and
Men and is often the dominant theme of sections during this story. This
theme occurs during many circumstances but is not present from start to
finish. In my mind for a theme to be pervasive is must be present during
every element of the story. There are many themes that are present most
of the way through such as sacrifice, friendship and comradeship. But in
my opinion there is only one theme that is present from beginning to
end, this theme is pursuit of dreams.

5 http://groups.csail.mit.edu/uid/deneme/
6 http://www.essay.org/school/english/ofmiceandmen.txt

Figure 3. The Human Macro is an end-user programming
interface for automating document manipulations. The left
half is the user’s authoring interface; the right half is a pre-
view of what the Turker will see.

Figure 2. Crowdproof is a human-augmented proofreader.
The drop-down explains the problem (blue title) and suggests
fixes (gold selection).

Design challenges

• Ensure that the user creates tasks that are scoped correctly for a
Mechanical Turk worker
• Ask user provide an example input and output, to clarify task

requirements

• Prevent the user from spending money on a buggy command
• The Human Macro helps debug the task by allowing a test run on

a sentence or paragraph

Showing the results

• User specifies if Turkers’ work should replace the existing text or
just annotate it

• If replace, text is underlined with drop-down substitution

• If annotate, feedback is inserted in comment bubbles anchored to
selected text using Word’s comments interface

Human Macro Examples

Request “Please change text in document from past
tense to present tense.”

Input
I gave one final glance around before
descending from the barrow. As I did so, my
eye caught something [...]

Output
I give one final glance around before
descending from the barrow. As I do so, my
eye catches something [...]

Human Macro Examples

Request
“Pick out keywords from the paragraph like
Yosemite, rock, half dome, park. Go to a site
which has CC licensed images [...]”

Input
When I first visited Yosemite State Park in
California, I was a boy. I was amazed by how
big everything was [...]

Output

Human Macro Examples

Request
“Please find the bibtex references for the 3
papers in brackets. You can located these by
Google Scholar searches and clicking on
bibtex.”

Input
Duncan and Watts [Duncan and watts
HCOMP 09 anchoring] found that Turkers will
do more work when you pay more, but that
the quality is no higher.

Output
@conference{ title={{Financial incentives and
[...]}}, author={Mason, W. and Watts, D.J.},
booktitle={HCOMP ‘09}}

Human Macro Examples

Request
“Please complete the addresses below to
include all informtion needed as in example
below. [...]”

Input Max Marcus, 3416 colfax ave east, 80206

Output Max Marcus3416 E Colfax Ave
Denver, CO 80206

Soylent’s contributions

• The idea of embedding paid crowd workers in an interactive user
interface to support complex cognition and manipulation tasks on
demand

• Crowd workers can do HCI tasks that computers cannot reliably do
automatically

• Easier to ask workers to do something than it is to write macro
script

This paper presents Soylent, a word processing interface that uses crowd
workers to help with proofreading, document shortening, editing and
commenting tasks. Soylent is an example of a new kind of interactive user
interface in which the end user has direct access to a crowd of workers for
assistance with tasks that require human attention and common sense.
Implementing these kinds of interfaces requires new software programming
patterns for interface software, since crowds behave differently than computer
systems. We have introduced one important pattern, FindFix-Verify, which
splits complex editing tasks into a series of identification, generation, and
verification stages that use independent agreement and voting to produce
reliable results. We evaluated Soylent with a range of editing tasks, finding and
correcting 82% of grammar errors when combined with automatic checking,
shortening text to approximately 85% of original length per iteration, and
executing a variety of human macros successfully.

Would you let just anyone edit your documents?

• Quality – do you believe that they are doing what we ask?

• Accuracy – do we have safeguards in place to avoid workers
introducing errors?

• Privacy – do we trust them with the material? Is it sensitive?

Would you let them read your email?

EmailValet: Managing Email Overload
through Private, Accountable Crowdsourcing

Nicolas Kokkalis, Thomas Köhn, Carl Pfeiffer, Dima Chornyi,
Michael S. Bernstein, Scott R. Klemmer

Stanford University HCI Group
Computer Science Department, 353 Serra Mall, Stanford, CA

{nicolas, thomasko, carlp87, chornyi, msb, srk}@cs.stanford.edu

ABSTRACT
This paper introduces privacy and accountability techniques
for crowd-powered systems. We focus on email task man-
agement: tasks are an implicit part of every inbox, but the
overwhelming volume of incoming email can bury im-
portant requests. We present EmailValet, an email client
that recruits remote assistants from an expert crowdsourc-
ing marketplace. By annotating each email with its implicit
tasks, EmailValet’s assistants create a task list that is auto-
matically populated from emails in the user’s inbox. The
system is an example of a valet approach to crowdsourcing,
which aims for parsimony and transparency in access con-
trol for the crowd. To maintain privacy, users specify rules
that define a sliding-window subset of their inbox that they
are willing to share with assistants. To support accountabil-
ity, EmailValet displays the actions that the assistant has
taken on each email. In a weeklong field study, participants
completed twice as many of their email-based tasks when
they had access to crowdsourced assistants, and they be-
came increasingly comfortable sharing their inbox with
assistants over time.

Author Keywords
Crowdsourcing; Email Overload; Human Assistants;
Task Management; Access Control.

ACM Classification Keywords
K.4.3 [Organizational Impacts]: Computer-supported col-
laborative work.

General Terms
Design; Human Factors.

INTRODUCTION
Email management means triaging a never-ending tide of
incoming requests. New messages push important requests
out of view, and those requests can be unintentionally
missed [26, 38]. To avoid overlooking important messages,
people spend large amounts of time carefully processing
their inbox or triage by focusing only on high priority mes-
sages [6, 18, 35]. However, people often keep unfinished
tasks in their inbox [38], and triaging is error-prone [35]. As
a result, tasks are often mixed with other emails, get pushed
down by new messages, become hard to find, and forgotten.

Current approaches for handling email-based tasks are lim-
ited and/or expensive. Integrating task management directly
into the email client [3, 8] or asking communicators to
structure their requests [39] requires significant manual
effort. Automatic techniques have shown some promise in
identifying tasks in emails [12, 16, 19, 25], but they are not
yet fully reliable [25] and require heavy-handed user inter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW ’13, February 23–27, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1331-5/13/02...$15.00.

Figure 1. The EmailValet email client draws on crowdsourced expert assistants to transform a cluttered inbox into an organized
task stream. Assistants are given limited, accountable access to the user’s inbox so that they may extract tasks from each email.

