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Thanks	to	Sco<	Novotney	for	today’s	slides!	



Lecture Takeaways 
1.   Get	more	data,	not	be<er	data	
2.   Use	other	Turkers	to	do	QC	for	you	
3.   Non-English	crowdsourcing	is	not	easy	
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•  Some Examples (lower is better) 
– Youtube: ~50% 
– Automatic closed captions for news: ~12% 
– Siri/Google voice: ~5% 

Evaluating Performance 

Reference	 THIS	 IS	 AN	 EXAMPLE	 SENTENCE	

Hypothesis	 THIS	 IS	 EXAMPLE	 CENT	 TENSE	
Score	 Del.	 Subs.	 Insert.	

%60
5
111

#
###

=
++

=
++

=
ref

delinssubWER



•  Both models are statistical  
–  I’m going to completely skip over how they work 

•  Need training data 
– Audio of people saying “one three zero four” 
– Matching transcript “one three zero four” 

arg max   P(     |W) P(W)       
             W 

Probabilistic Modeling 

Acoustic 
Model 

Language 
Model 



Why do we need data? 
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Motivation 
•  Speech recognition models are hungry for data 

–  ASR requires thousands of hours of transcribed audio 
–  In-domain data needed to overcome mismatches like 

language, speaking style, acoustic channel, noise, etc… 

•  Conversational telephone speech transcription is difficult 
–  Spontaneous speech between intimates 
–  Rapid speech, phonetic reductions and varied speaking style 
–  Expensive and time consuming 

•  $150 / hour of transcription 
•  50 hours of effort / hour of transcription 

•  Deploying to new domains is slow and expensive 



Evaluating Mechanical Turk 
•  Prior work judged quality by comparing Turkers to experts 

–  10 Turkers match expert for many NLP tasks (Snow et al 2008) 

•  Other Mechanical Turk speech transcription had low WER 
–  Robot Instructions ~3% WER (Marge 2010) 
–  Street addresses, travel dialogue ~6% WER (McGraw 2010) 

•  Right metric depends on the data consumer 
–  Humans: WER on transcribed data 
–  Systems: WER on test data decoded with a trained system 



English Speech Corpus 
•  English Switchboard corpus 

–  Ten minute conversations about an assigned topic 
–  Two existing transcriptions for a twenty hour subset: 

•  LDC – high quality, ~50xRT transcription time 
•  Fisher ‘QuickTrans’ effort – 6xRT transcription time 

•  Callfriend language-identification corpora 
–  Korean, Hindi, Tamil, Farsi, and Vietnamese 
–  Conversations from U.S. to home country between friends  
–  Mixture of English and native language 
–  Only Korean has existing LDC transcriptions 



Transcription Task 

Pay: 
OH WELL I GUESS RETIREMENT THAT KIND OF THING 
WHICH I DON'T WORRY MUCH ABOUT 

UH AND WE HAVE A SOCCER TEAM THAT COMES AND 
GOES WE DON'T EVEN HAVE THAT PRETTY 



Speech Transcription for $5/hour 
•  Paid $300 to transcribe 20 hours of Switchboard three times 

–  $5 per hour of transcription ($0.05 per utterance) 
–  1089 Turkers completed the task in six days 
–  30 utterances transcribed on average (earning 15 cents) 
–  63 Turkers completed more than 100 utterances 

•  Some people complained about the cost  
–  “wow that's a lot of dialogue for $.05” 
–  “this stuff is really hard. pay per hit should be higher” 

•  Many enjoyed the task and found it interesting 
–  “Very interesting exercise. would welcome more hits.” 
–  “You don't grow pickles they are cucumbers!!!!” 



Turker Transcription Rate 

Transcription Time / Utterance Length (xRT) 
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Dealing with Real World Data 
•  Every word in the transcripts needs a pronunciation 

–  Misspellings, new proper name spellings, jeez vs. geez 
–  Inconsistent hesitation markings, myriad of ‘uh-huh’ spellings 
–  26% of utterances contained OOVs (10% of the vocabulary) 

•  Lots of elbow grease to prepare phonetic dictionary 

•  Turkers found creative ways not to follow instructions 
–  Comments like “hard to hear” or “did the best I could :)” 
–  Enter transcriptions into wrong text box 
–  But very few typed in gibberish 

 
•  We did not explicitly filter comments, etc… 



Disagreement with Experts 
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23% mean disagreement 

Transcrip2on	 WER	

well	ITS	been	nice	talking	to	you	again	 12%	

well	it's	been	[DEL]		A	NICE	PARTY	JENGA		 71%	

well	it's	been	nice	talking	to	you	again		 0%	



Estimation of Turker Skill 

Average Turker Disagreement 
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True disagreement of 23% 
Estimated disagreement of 25% 

Transcrip2on	 WER	 Est.	WER	

well	ITS	been	nice	talking	to	you	again	 12%	 43%	

well	it's	been	[DEL]		A	NICE	PARTY	JENGA		 71%	 78%	

well	it's	been	nice	talking	to	you	again		 0%	 37%	



Rating Turkers: Expert vs. Non-Expert 
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Finding the Right Turkers 
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Easy to reject bad workers 

Hard to find good workers 



Selecting Turkers by Estimated Skill 
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Reducing Disagreement 

Selection LDC Disagreement 

None 23% 

System Combination 21% 

Estimated Best Turker 20% 

Oracle Best Turker 18% 

Oracle Best Utterance 13% 



Mechanical Turk for ASR Training 
•  Ultimate test is system performance 

–  Build acoustic and language models 
–  Decode test set and compute WER 
–  Compare to systems trained on equivalent expert transcription 

•  23% professional disagreement might seem worrying 
–  How does it effect system performance? 
–  Do reductions in disagreement transfer to system gains? 
–  What are best practices for improving ASR performance? 



Breaking Down The Degradation 
•  Measured test WER degradation from 1 to 16 hours 

–  3% relative degradation for acoustic model 
–  2% relative degradation for language model 
–  5% relative degradation for both 
–  Despite 23% transcription disagreement with LDC 
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Value of Repeated Transcription 
•  Each utterance was transcribed three times 

•  What is the value of this duplicate effort? 
–  Instead of dreaming up a better combination method, use oracle 

error rate as upper bound on system combination 

 
•  Cutting disagreement in half reduced degradation by half 

•  System combination has at most 2.5% WER to recover 

Transcription LDC Disagreement ASR WER 

Random 23% 42.0% 

Oracle 13% 40.9% 

LDC - 39.5% 



How to Best Spend Resources? 
•  Given a fixed transcription budget, either: 

–  Transcribe as much audio as possible 
–  Improve quality by redundantly transcribing 

•  With a 60 hour transcription budget,  
–  42.0% 20 hours transcribed once 
–  40.9% Oracle selection from 20 hours transcribed three times 
–  37.6% 60 hours transcribed once 
–  39.5% 20 hours professionally transcribed 

•  Get more data, not better data 
–  Compare 37.6% WER versus 40.9% WER 

•  Even expert data is outperformed by more lower quality data 
–  Compare 39.5% WER to 37.6% WER 

Transcription Hours Cost ASR 
WER 

Mturk  20 $100 42.0% 
Oracle Mturk 20 $300 40.9% 

MTurk 60 $300 37.6% 
LDC 20 39.5% 
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•  Given a fixed transcription budget, either: 

–  Transcribe as much audio as possible 
–  Improve quality by redundantly transcribing 

•  With a 60 hour transcription budget,  
–  42.0% 20 hours transcribed once 
–  40.9% Oracle selection from 20 hours transcribed three times 
–  37.6% 60 hours transcribed once 
–  39.5% 20 hours professionally transcribed 

•  Get more data, not better data 
–  Compare 37.6% WER versus 40.9% WER 

•  Even expert data is outperformed by more lower quality data 
–  Compare 39.5% WER to 37.6% WER 

Transcription Hours Cost ASR 
WER 

Mturk  20 $100 42.0% 
Oracle Mturk 20 $300 40.9% 

MTurk 60 $300 37.6% 
LDC 20 ~$3000 39.5% 



Comparing Cost of Reducing WER 
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Korean 
•  Tiny labor pool (initially two Turkers versus 1089 for English) 
 
•  Posted separate ‘Pyramid Scheme’ HIT 

–  Paid referrer 25% of what referred earns transcribing 
–  Transcription costs $25/hour instead of $20/hour 
–  80% of transcriptions came from referrals 

•  Transcribed three hours in five weeks 
–  Paid 8 Turkers $113 at a transcription rate of 10xRT 

•  Despite 17% CER, test CER only goes down by 1.5% relative 
–  from 51.3% CER to 52.1% CER 
–  Reinforces English conclusions about the usefulness of noisy 

data for training an ASR system 



Tamil and Hindi 
•  Collected one hour of transcripts 

–  Much larger labor pool – how many? 
–  Paid $20/hour, finished in 8 days 
–  Difficult to accurately convey instructions 

•  Many translated Hindi audio to English 

•  No clear conclusions 
–  A private contractor provided transcriptions 
–  Very high disagreement (80%+) for both languages 

•  Reference transcripts inaccurate 
•  Colloquial speech, poor audio quality 
•  English speech irregularly transliterated into Devanagari 
•  Lax gender agreement both for speaking and transcribing 

–  Hindi ASR might be a hard task 



English Conclusions 
•  Mechanical Turk can quickly and cheaply transcribe difficult 

audio like English CTS  
–  10 hours a day for $5 / hour 

•  Can reasonably predict Turker skill w/out gold standard data 
–  But this turns out not to be as important as we thought 
–  Oracle selection still only cuts disagreement in half 

•  Trained models show little degradation despite 23% 
professional disagreement 
–  Even perfect expert agreement has small impact on system 

performance (2.5% reduction in WER) 
–   Resources better spent getting more data than better data 



Foreign Language Conclusions 
•  Non-English Turkers are on Mechanical Turk 

–  But not a field of dreams 
•  “If you post it, they will come” 

•  Korean results reinforce English conclusions 
–  0.8% system degradation despite 17% disagreement 
–  $20/hour (still very cheap) 

•  Small amounts of errorful data is useful 
–  Poor models can still produce useable systems 

•  90% topic classification accuracy possible despite 80%+ WER 
–  Semi-supervised methods can bootstrap initial models 

•  51% WER reduced to 27% with a one hour acoustic model 

•  Noisy data is much more useful than you think 



Swahili and Amharic (Gelas, 2011) 
•  Two under-resourced African languages 

–  17M speak Amharic in Ethiopia 
–  50M speak Swahili in East Africa (Kenya, Congo, etc…) 

•  Not many workers on Mturk 
–  12 Amharic, 3 Swahili 

•  And they generated data very slowly 
–  0.75hrs after 73 days, 1.5hrs after 12 days 

•  But despite being worse than professionals 
–  16% WER, 27.7% WER 

•  ASR systems performed as well as professionals 

•  At the end of the day, researchers paid grad students at $103/
hr of transcription to get 12 hours vs. $37/hr on MTurk 



Other Speech Tasks 
•  Use MTurk to elicit speech for the target domain 

–  Data collected on microphone, so point them to an app instead 
•  Use Turkers to perform verification and correction 

–  Listen to <audio, transcript> pairs and verify right or wrong 
–  Correct automatic speech output 

•  Speech Science 
–  How sensitive are humans to noise? 
–  Can they detect accent, fluency, etc… 

•  System Evaluation 
–  Synthesized Speech (but again non-English was tough) 
–  Spoken Dialog Systems a.k.a. Siri 



If You’re Curious 
•  Praat - http://www.fon.hum.uva.nl/praat/ 

–  Speech analysis 
•  Kaldi - Open Source State of the Art Recognizer 

–  http://kaldi.sourceforge.net/ 
•  Linguistic Data Consortium 

–  Based right here at Penn! 
–  Creates almost all of the speech corpora used in research 



BACKUP 



Cheaply Estimating Turker Skill 

Number of Utterances to Estimate Disagreement 
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