
NETS 213: CROWDSOURCING
AND HUMAN COMPUTATION

Programming
the Crowd

• MTurk provides an on-demand source for human computation
• Potential opportunities for exploring algorithms that use people as a function call
• However, MTurk isn’t set up to support algorithms

Algorithms for human computation

MTurk limitations

• MTurk requesters can post batches of independent jobs
• Perfect for tasks that can be done in parallel like labeling 1000 images
• But poorly suited for tasks that build on each other
• What is MTurk missing that is essential in algorithms or programming

languages?

TurKit: A programming language for the crowd

ideas = []
for (var i = 0; i < 5; i++) {

idea = mturk.prompt(
"What’s fun to see in New York City? Ideas so far: " + ideas.join(", "))

ideas.push(idea)
}
ideas.sort(function (a, b) {

v = mturk.vote("Which is better?", [a, b]) return v == a ? -1 : 1
})

What new concerns exist for crowd programming?

• After a HIT is posted to MTurk, it can take hours before Turkers complete it and
so latency could cause algorithms to take days

• What is the behavior if your program crashes?
• What if this happens after you have already spent money on a bunch of HITs?

Crash and re-run

• TurKit introduces a new programming paradigm called crash and rerun
• Designed for long running processes where local computation is cheap, and

remote work is costly
• (Crash) Cache and re-run

Quicksort

quicksort(A):
if A.length > 0:

pivot ← A.remove(A.randomIndex())
left ← new array; right ← new array

for x in A:
if compare(x, pivot):

left.add(x)
else:

right.add(x)
quicksort(left)

quicksort(right)
A.set(left + pivot + right)

81 39 68 9 3 28 62 42 25 97

81 39 68 9 3 28 62 42 25 97

81 39 68 9 3 28 62

42

25 97

81

39 68 9 3 28 62

42

25 97

>

81

39 68 9 3 28 62

42

25 97

81

39

68 9 3 28 62

42

25 97

<

8139

68 9 3 28 62

42

25 97

8139

68

9 3 28 62

42

25 97

>

8139 68

9 3 28 62

42

25 97

8139 68

9

3 28 62

42

25 97

<

8139 689

3 28 62

42

25 97

8139 689

3

28 62

42

25 97

<

8139 689 3

28

62

42

25 97

<

8139 689 3 28

62

42

25 97

>

8139 689 3 28 62

42

25

97

<

8139 689 3 28 62

42

25

97

>

8139 689 3 28 62

42

25 97

8139 689 3 28 624225 97

8139 689 3 28 624225 97

8139

68

9 3

28

624225 97

8139

68

9 3

28

624225 97

> >

8139

68

9

3

28

62

4225 97

< <

8139

68

9

3

28

62

4225

97

< >

8139

68

9 3

28

62

42

25

97

<

8139

68

9 3

28

62

42

25 97

8139 689 3 28 624225 97

8139 689 3 28 624225 97

8139 689 3 28 624225 97

81

39 68

9

3 28 624225 97

81

39 68

9

3

28 624225

97

< >

81

39 68

9

3

28 624225

97

81

39 68

9

3

28 6242

25

97

>

81

39 68

9

3

28 6242

25 97

8139 6893 28 624225 97

8139 6893 28 624225 97

Quicksort on MTurk

compare(a, b):
hitId ← createHIT(...a...b...)

result ← getHITResult(hitId)
return (result says a < b)

>

>

<

<

>

>

> <

>

<

>

Quicksort as a long-running process

• With this implementation we must wait for people to complete their judgments
• The algorithm may need to run for a very long time while waiting
• Challenge: How to maintain state

Quicksort as a long-running process

• Normally quicksort maintains its state in the heap or the stack
• These are normally dynamically allocated in memory, and used by all of the

programs running on a computer
• Memory isn’t typically used for hours or days
• If the computer reboots, then our program’s state would be lost and we would

lose $$$

Store results in a DB

• Insight of crash-and-rerun paradigm is that if the program crashes, it should be
cheap to re-run

• Use a database to store all of the results up to the place that it crashed
• Since local computation is cheap, calling DB and re-executing code with store

results is cheap

New keyword once

• Costly operations can be marked in a TurKit program with keyword once
• once denotes that an operation should only be executed once across all runs of

a program

Quicksort on MTurk

compare(a, b):
hitId ← once createHIT(...a...b...)
result ← once getHITResult(hitId)
return (result says a < b)

• Subsequent runs of the program will check the database before performing
these operations

When should you mark a function with once?

• High cost: This is its main usage; whenever a function is high-cost in terms of
money or time, once saves the day

• Non-determinism: Storing results in DB assumes that the program executes in
a deterministic way

✓

X X✓

X X X✓X

Quicksort

quicksort(A):
if A.length > 0:

pivot ← A.remove(once A.randomIndex())
left ← new array; right ← new array

for x in A:
if compare(x, pivot):

left.add(x)
else:

right.add(x)
quicksort(left)

quicksort(right)
A.set(left + pivot + right)

When should you mark a function with once?

• Side-effects: If a function has side effects during repeated calls, then wrap it in
once

Other benefits of once

• Incremental programming: You can write part of an algorithm, test it, view the
results, modify it, and rerun.

• Retroactive print-line debugging: If your program behaves in an unexpected
fashion, you can put in debugging print statements after the fact

• This also lets you print data to a file if you decide that you want to analyze it

TurKit script

• TurKit is built on top of JavaScript
• Users have full access to JavaScript
• Plus a set of APIs built around MTurk and the crash-and-rerun programming

paradigm

TurKit keywords

• once
• crash
• fork / join

The crash keyword

• Why in the hell would you want to tell your program to crash?
• Since we cache results in a DB, crash is an alternate to wait
• Most common use for crash is waiting for results to be returned from MTurk
• TurKit automatically re-runs program after a set interval

fork allows for parallel execution

• TurKit allows multiple branches to be run in parallel via fork
• Calling crash from within a forked branch resumes the execution of the former

branch
• This allows you to post multiple jobs on MTurk simultaneously
• The script can make progress on whatever path gets a result first

One HIT at a time

a = createHITAndWait() // HIT A
b = createHITAndWait(...a...) // HIT B

c = createHITAndWait() // HIT C
d = createHITAndWait(...c...) // HIT D

• B depends on A
• D depends on C
• They don’t depend on each other. Why wait?

Multiple HITs at a time

fork(function() {
a = createHITAndWait() // HIT A

b = createHITAndWait(...a...) // HIT B
})

fork(function() {
c = createHITAndWait() // HIT C

d = createHITAndWait(...c...) // HIT D
})

The join keyword

fork(...b = ...)
fork(...d = ...)

join()
e = createHITAndWait(...b...d...)

• join waits for all previous forks for finish

Calling Mechanical Turk

• TurKit adds several simple commands for interacting with MTurk:
• prompt
• vote
• sort

Calling MTurk: prompt

print(mturk.prompt(“When did Colorado become a state?”))

a = mturk.prompt(“What is your favorite color?”, 100)

• prompt optionally allows a second argument with the number of responses

Calling MTurk: vote

v = mturk.vote("Which is better?", [a, b])
// returns the list item with the most votes

• Optional 3rd argument to specify how many votes to collect

Calling MTurk: vote

function vote(message, options) {
// create comparison HIT

var h = mturk.createHITAndWait({
...message...options...

assignments : 3})
// get enough votes

while (...votes for best option < 3...) {
mturk.extendHIT(...add assignment...)

h = mturk.waitForHIT(h)
}

return ...best option...
}

Calling MTurk: sort

ideas.sort(function (a, b) {
v = mturk.vote("Which is better?", [a, b])

return v == a ? -1 : 1
})

• This version just uses JavaScript’s built-in sorting function
• Defines a comparator using mturk.vote
• Negative: Comparisons are done serially

Under the hood

• TurKit is handles the MTurk API
• It generates web pages and CSS and hosts them on Amazon’s S3 server
• Nice additional features, like disabling of form elements while in preview mode
• DB is serialized using JSON

TurKit

• IDE for writing TurKit scripts, running them, and automatically rerunning them
• TurKit “crashes” after publishing a HIT; re-running polls MTurk to check for result
• Provides controls for switching from sandbox into normal MTurk, clearing DB

Time for results to come back, by reward amount

Time for first $0.01 assignment to complete

Dealing with latency

• Build the programming language to deal with high-latency operations
• Do something to optimize throughput on MTurk
• One (nefarious) example: Artificially inflate number of assignments in your HIT

to get front-page placement

Time to execute once all HITs have been cached

Pros and cons of TurKit

• Con: Scalability – assumes local computation is minimal. Rerunning after each
HIT might be tedious if task is large

• Con: Parallel programming – not completely general in TurKit. once, fork and
join do not give enough state.

• Con: Experimental replicability – usually one downside of human computation is
that results with differ each time. Not so with TurKit!

What experiments would you
run?

