NETS 213: CROWDSOURCING
AND HUMAN COMPUTATION

Programming et LI
the Crowd N SR T\

Sl ““f W ‘ <

NN S
N /| | ; 7 E N\ / (" ,,.,\ f
‘ o PN & 1Y ‘W\' S @HEC

\ =

A

@ Penn _
nomecrin
mgﬂ of PENNSYLVAI\%

Algorithms for human computation

 MTurk provides an on-demand source for human computation

« Potential opportunities for exploring algorithms that use people as a function call
 However, MTurk isn’t set up to support algorithms

& Penn Engineering

MTurk limitations

 MTurk requesters can post batches of independent jobs
» Perfect for tasks that can be done in parallel like labeling 1000 images
« But poorly suited for tasks that build on each other

 What is MTurk missing that is essential in algorithms or programming
languages?

& Penn Engineering

TurKit: A programming language for the crowd

ideas = []
for (var i = 0; i < 5; i++) {
idea = mturk.prompt(
"What’s fun to see in New York City? Ideas so far: " + ideas.join(", "))
ideas.push(idea)

}
ideas.sort(function (a, b) {

v = mturk.vote("Which is better?", [a, b]) return v == a ? -1 : 1
})

& Penn Engineering

What new concerns exist for crowd programming?

« After a HIT is posted to MTurk, it can take hours before Turkers complete it and
so latency could cause algorithms to take days

« What is the behavior if your program crashes?
« What if this happens after you have already spent money on a bunch of HITs?

& Penn Engineering

Crash and re-run

« TurKit introduces a new programming paradigm called crash and rerun

« Designed for long running processes where local computation is cheap, and
remote work is costly

e (CGrash) Cache and re-run

& Penn Engineering

Quicksort

quicksort(A):
if A.length > 0:
pivot <« A.remove(A.randomIndex())
left « new array; right < new array
for x in A:
if compare(x, pivot):
left.add(x)
else:
right.add(x)
quicksort(left)
quicksort(right)
A.set(left + pivot + right)

& Penn Engineering

81 |39 (68 |9 3 28 |62 [42 |25 |97

& Penn Engineering

81

39

68

28

@’; Penn Engineering

97

81

39

68

28

62

@’; Penn Engineering

25

97

& Penn Engineering

39

68

28

62

81

25

97

& Penn Engineering

39

68

28

62

25

97

81

& Penn Engineering

68

28

62

39

25

97

81

& Penn Engineering

68

28

62

39

25

97

81

& Penn Engineering

28

62

68

39

25

97

81

& Penn Engineering

28

62

39

25

97

81

68

& Penn Engineering

28

62

39

25

97

81

68

& Penn Engineering

28

62

39

25

97

81

68

& Penn Engineering

28

62

39

25

97

81

68

& Penn Engineering

62

28

39

25

97

81

68

& Penn Engineering

62

39

28

25

97

81

68

& Penn Engineering

25

39

28

97

81

68

62

& Penn Engineering

97

39

28

25

81

68

62

@’; Penn Engineering

39

28

25

81

68

62

97

39

28

68

62

97

& Penn Engineering

39

97

& Penn Engineering

39

@z\? Penn Engineering

62

97

F?\? Penn Engineering

62

97

39

81

F?\? Penn Engineering

62

39

97

81

F?\? Penn Engineering

39

97

62

81

25

F?\? Penn Engineering

39

62

81

97

25

F?\? Penn Engineering

39

62

81

97

97

& Penn Engineering

97

F?\? Penn Engineering

ngg Penn Engineering

@Z\E Penn Engineering

97

ngg Penn Engineering

97

ngg Penn Engineering

97

ngg Penn Engineering

25

97

ngg Penn Engineering

25

97

@Z\E Penn Engineering

ngg Penn Engineering

Quicksort on MTurk

compare(a, b):
hitId < createHIT(...a...b...)
result <« getHITResult(hitId)
return (result says a < b)

Fé-%f Penn Engineering

=i ety 5 = S

& Penn Engineering

‘& Penn Engineering

D
Q

‘& Penn Engi

D
Q

‘& Penn Engi

‘& Penn Engineering

‘& Penn Engineering

‘& Penn Engineering

o
Q

‘& Penn Engi

& Penn Engineering

& Penn Engineering

& Penn Engineering

D
Q

‘& Penn Engi

‘& Penn Engineering

‘& Penn Engineering

& Penn Engineering

& Penn Engineering

& Penn Engineering

& Penn Engineering

Quicksort as a long-running process

« With this implementation we must wait for people to complete their judgments
« The algorithm may need to run for a very long time while waiting
* Challenge: How to maintain state

& Penn Engineering

Quicksort as a long-running process

* Normally quicksort maintains its state in the heap or the stack

« These are normally dynamically allocated in memory, and used by all of the
programs running on a computer

 Memory isn’t typically used for hours or days
 If the computer reboots, then our program’s state would be lost and we would

lose $$%

& Penn Engineering

Store results in a DB

 Insight of crash-and-rerun paradigm is that if the program crashes, it should be
cheap to re-run

« Use a database to store all of the results up to the place that it crashed

« Since local computation is cheap, calling DB and re-executing code with store
results is cheap

& Penn Engineering

New keyword once

« Costly operations can be marked in a TurKit program with keyword once

e once denotes that an operation should only be executed once across all runs of
a program

& Penn Engineering

Quicksort on MTurk

compare(a, b):
hitId « once createHIT(...a...b...)
result « once getHITResult(hitId)

return (result says a < b)

« Subsequent runs of the program will check the database before performing
these operations

& Penn Engineering

When should you mark a function with once?

* High cost: This is its main usage; whenever a function is high-cost in terms of
money or time, once saves the day

 Non-determinism: Storing results in DB assumes that the program executes in
a deterministic way

& Penn Engineering

=i ety 5 = S

& Penn Engineering

‘& Penn Engineering

& Penn Engineering

‘& Penn Engineering

& Penn Engineering

‘& Penn Engineering

Quicksort

quicksort(A):
if A.length > 0:
pivot « A.remove(once A.randomIndex())
left « new array; right < new array
for x in A:
if compare(x, pivot):
left.add(x)
else:
right.add(x)
quicksort(left)
quicksort(right)
A.set(left + pivot + right)

& Penn Engineering

When should you mark a function with once?

« Side-effects: If a function has side effects during repeated calls, then wrap it in
once

& Penn Engineering

Other benefits of once

* Incremental programming: You can write part of an algorithm, test it, view the
results, modify it, and rerun.

* Retroactive print-line debugging: If your program behaves in an unexpected
fashion, you can put in debugging print statements after the fact

« This also lets you print data to a file if you decide that you want to analyze it

‘& Penn Engineering

TurKit script

« TurKit is built on top of JavaScript
» Users have full access to JavaScript

* Plus a set of APIs built around MTurk and the crash-and-rerun programming
paradigm

& Penn Engineering

TurKit keywords

* once
e crash
« fork/join

@z\? Penn Engineering

The crash keyword

Why in the hell would you want to tell your program to crash?

Since we cache results in a DB, crash is an alternate to wait

Most common use for crash is waiting for results to be returned from MTurk
TurKit automatically re-runs program after a set interval

& Penn Engineering

fork allows for parallel execution

« TurKit allows multiple branches to be run in parallel via fork

« Calling crash from within a forked branch resumes the execution of the former
branch

« This allows you to post multiple jobs on MTurk simultaneously
» The script can make progress on whatever path gets a result first

& Penn Engineering

One HIT at a time

a = createHITAndWait() // HIT A
b = createHITAndWait(...a...) // HIT B
c = createHITAndWait() // HIT C
d = createHITAndWait(...c...) // HIT D

« B dependsonA
« D dependsonC
 They don’t depend on each other. Why wait?

& Penn Engineering

Multiple HITs at a time

fork(function() {

a = createHITAndWait() // HIT A
b = createHITAndWait(...a...) // HIT B
})
fork(function() {
c = createHITAndWait() // HIT C
d = createHITAndWait(...c...) // HIT D
})

& Penn Engineering

The join keyword

fork(...b = ...)
fork(...d = ...)
join()

e = createHITAndWait(...b...d...)

 join waits for all previous forks for finish

& Penn Engineering

Calling Mechanical Turk

« TurKit adds several simple commands for interacting with MTurk:
« prompt
- vote
- sort

& Penn Engineering

Calling MTurk: prompt

print(mturk.prompt(“When did Colorado become a state?”))

« prompt optionally allows a second argument with the number of responses

a = mturk.prompt(“What is your favorite color?”, 100)

& Penn Engineering

Calling MTurk: vote

v = mturk.vote("Which is better?", [a, b])
// returns the list item with the most votes

« Optional 3" argument to specify how many votes to collect

@? Penn Engineering

Calling MTurk: vote

function vote(message, options) {

// create comparison HIT

var h = mturk.createHITAndWait({
...message...options...
assignments : 3})

// get enough votes

while (...votes for best option < 3...) {
mturk.extendHIT(...add assignment...)
h = mturk.waitForHIT(h)

}

return ...best option...

&

'Penn Engineering

Calling MTurk: sort

ideas.sort(function (a, b) {
v = mturk.vote("Which is better?", [a, b])

return v == a ? -1 : 1

1)

« This version just uses JavaScript's built-in sorting function
» Defines a comparator using mturk.vote
* Negative: Comparisons are done serially

& Penn Engineering

Under the hood

* TurKit is handles the MTurk API

» It generates web pages and CSS and hosts them on Amazon’s S3 server

* Nice additional features, like disabling of form elements while in preview mode
« DB is serialized using JSON

& Penn Engineering

TurkKit

« |IDE for writing TurKit scripts, running them, and automatically rerunning them
« TurKit “crashes” after publishing a HIT; re-running polls MTurk to check for result
* Provides controls for switching from sandbox into normal MTurk, clearing DB

& Penn Engineering

Projects
A

el

Run Controls

L

Getting Started
A

Amazon Web Service Credentials
|
|

oy ! _
aws access key id: aws secret access key:
urKl AKIAJWIROTA3QHKOC

000000000000 000 0
new project

main.js
print ("Hello World"™)
print ("Your balance is:

" + mturkBase.getAccountBalance())

props

main.js var w = webpage.create (read("hit.html"))
output
for (var i = 0; i < 2; i+¥) {
db :
aew ile fork(function () {
) var hitId = mturk.createHIT ({
hit.html title : "Simple question”,
A desc : "Answer a simple question.",
OtherPro;ect reward : 0.01,
url = w

H
var hit = mturk.waitForHIT (hitId)

print ("Answer = " + hit.assignments[0].answer.choice)

mturk.approveAssignment (hit.assignments[0])
mturk.deleteHIT (hit)
}
API reference)
join()
example projects

hello world clone webpage.remove (w)
iterative writing clone
brainstorming clone
sorting clone

|
Editor

Penn Engineering

User

A
[|

user@gmail.com
logout

output

Hello World
Your balance is:
Answer = 42

10000

crashed - waiting on hit:
1QQJIRVITXEVEZQM7TK62JHIJREVJIXTHA

crashed - ready to rerun

Y
indinQ

\

J

execution trace
;--'-create webpage
L?]-fork
--createHIT
H-waitForHIT
approveAssignment

. deleteHIT

=-fork
E'---createHIT

B waitForHIT

|
2JBe.4] Uolilndax3

Time for results to come back, by reward amount

n
o
H——

w 45
[}
L
£ ¥
H 30
¥
15
*
0 T
0 1 2 cents 5 cents 10 cents

@z\? Penn Engineering

Time for first $0.01 assighment to complete

100000

10000

1000

100

seconds

10

1

1 1001 HITs 2001 HITs

@?TbnnEhghweﬁng

Dealing with latency

« Build the programming language to deal with high-latency operations

* Do something to optimize throughput on MTurk

* One (nefarious) example: Artificially inflate number of assignments in your HIT
to get front-page placement

All HITs
1-10 of 3390 Results
Sort by: | HITs Available (most first) : @

f&u{pastg[dic&cogﬂgste - second batch

Requester: {VJ ravosh Samari

HIT Exp

Time Al
o
" Cateqorize: Busin US, Level III

Requester: \rv\ CrowdSource

HIT Exp

& Penn Engineering

Time to execute once all HITs have been cached

12
10 *
-
.0 &°
» 1+ %
o P . . .
0 500 1000 1500
HITs

F?\? Penn Engineering

Pros and cons of TurkKit

« Con: Scalability — assumes local computation is minimal. Rerunning after each
HIT might be tedious if task is large

« Con: Parallel programming — not completely general in TurKit. once, fork and
join do not give enough state.

« Con: Experimental replicability — usually one downside of human computation is
that results with differ each time. Not so with TurKit!

‘& Penn Engineering

What experiments would you
run?

@? Penn Engineering

