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Algorithms for human computation

 MTurk provides an on-demand source for human computation

« Potential opportunities for exploring algorithms that use people as a function call
 However, MTurk isn’t set up to support algorithms
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MTurk limitations

 MTurk requesters can post batches of independent jobs
» Perfect for tasks that can be done in parallel like labeling 1000 images
« But poorly suited for tasks that build on each other

 What is MTurk missing that is essential in algorithms or programming
languages?
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TurKit: A programming language for the crowd

ideas = []
for (var i = 0; i < 5; i++) {
idea = mturk.prompt(
"What’s fun to see in New York City? Ideas so far: " + ideas.join(", "))
ideas.push(idea)

}
ideas.sort(function (a, b) {

v = mturk.vote("Which is better?", [a, b]) return v == a ? -1 : 1
})
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What new concerns exist for crowd programming?

« After a HIT is posted to MTurk, it can take hours before Turkers complete it and
so latency could cause algorithms to take days

« What is the behavior if your program crashes?
« What if this happens after you have already spent money on a bunch of HITs?
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Crash and re-run

« TurKit introduces a new programming paradigm called crash and rerun

« Designed for long running processes where local computation is cheap, and
remote work is costly

e (CGrash) Cache and re-run
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Quicksort

quicksort(A):
if A.length > 0:
pivot <« A.remove(A.randomIndex())
left « new array; right < new array
for x in A:
if compare(x, pivot):
left.add(x)
else:
right.add(x)
quicksort(left)
quicksort(right)
A.set(left + pivot + right)
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Quicksort on MTurk

compare(a, b):
hitId < createHIT(...a...b...)
result <« getHITResult(hitId)
return (result says a < b)
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Quicksort as a long-running process

« With this implementation we must wait for people to complete their judgments
« The algorithm may need to run for a very long time while waiting
* Challenge: How to maintain state
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Quicksort as a long-running process

* Normally quicksort maintains its state in the heap or the stack

« These are normally dynamically allocated in memory, and used by all of the
programs running on a computer

 Memory isn’t typically used for hours or days
 If the computer reboots, then our program’s state would be lost and we would

lose $$%
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Store results in a DB

 Insight of crash-and-rerun paradigm is that if the program crashes, it should be
cheap to re-run

« Use a database to store all of the results up to the place that it crashed

« Since local computation is cheap, calling DB and re-executing code with store
results is cheap
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New keyword once

« Costly operations can be marked in a TurKit program with keyword once

e once denotes that an operation should only be executed once across all runs of
a program
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Quicksort on MTurk

compare(a, b):
hitId « once createHIT(...a...b...)
result « once getHITResult(hitId)

return (result says a < b)

« Subsequent runs of the program will check the database before performing
these operations

& Penn Engineering



When should you mark a function with once?

* High cost: This is its main usage; whenever a function is high-cost in terms of
money or time, once saves the day

 Non-determinism: Storing results in DB assumes that the program executes in
a deterministic way
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Quicksort

quicksort(A):
if A.length > 0:
pivot « A.remove(once A.randomIndex())
left « new array; right < new array
for x in A:
if compare(x, pivot):
left.add(x)
else:
right.add(x)
quicksort(left)
quicksort(right)
A.set(left + pivot + right)
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When should you mark a function with once?

« Side-effects: If a function has side effects during repeated calls, then wrap it in
once
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Other benefits of once

* Incremental programming: You can write part of an algorithm, test it, view the
results, modify it, and rerun.

* Retroactive print-line debugging: If your program behaves in an unexpected
fashion, you can put in debugging print statements after the fact

« This also lets you print data to a file if you decide that you want to analyze it
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TurKit script

« TurKit is built on top of JavaScript
» Users have full access to JavaScript

* Plus a set of APIs built around MTurk and the crash-and-rerun programming
paradigm
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TurKit keywords

* once
e crash
« fork/join
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The crash keyword

Why in the hell would you want to tell your program to crash?

Since we cache results in a DB, crash is an alternate to wait

Most common use for crash is waiting for results to be returned from MTurk
TurKit automatically re-runs program after a set interval
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fork allows for parallel execution

« TurKit allows multiple branches to be run in parallel via fork

« Calling crash from within a forked branch resumes the execution of the former
branch

« This allows you to post multiple jobs on MTurk simultaneously
» The script can make progress on whatever path gets a result first
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One HIT at a time

a = createHITAndWait() // HIT A
b = createHITAndWait(...a...) // HIT B
c = createHITAndWait() // HIT C
d = createHITAndWait(...c...) // HIT D

« B dependsonA
« D dependsonC
 They don’t depend on each other. Why wait?
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Multiple HITs at a time

fork(function() {

a = createHITAndWait() // HIT A
b = createHITAndWait(...a...) // HIT B
})
fork(function() {
c = createHITAndWait() // HIT C
d = createHITAndWait(...c...) // HIT D
})
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The join keyword

fork(...b = ...)
fork(...d = ...)
join()

e = createHITAndWait(...b...d...)

 join waits for all previous forks for finish
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Calling Mechanical Turk

« TurKit adds several simple commands for interacting with MTurk:
« prompt
- vote
- sort
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Calling MTurk: prompt

print(mturk.prompt(“When did Colorado become a state?”))

« prompt optionally allows a second argument with the number of responses

a = mturk.prompt(“What is your favorite color?”, 100)
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Calling MTurk: vote

v = mturk.vote("Which is better?", [a, b])
// returns the list item with the most votes

« Optional 3" argument to specify how many votes to collect
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Calling MTurk: vote

function vote(message, options) {

// create comparison HIT

var h = mturk.createHITAndWait({
...message...options...
assignments : 3})

// get enough votes

while (...votes for best option < 3...) {
mturk.extendHIT(...add assignment...)
h = mturk.waitForHIT(h)

}

return ...best option...
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Calling MTurk: sort

ideas.sort(function (a, b) {
v = mturk.vote("Which is better?", [a, b])

return v == a ? -1 : 1

1)

« This version just uses JavaScript's built-in sorting function
» Defines a comparator using mturk.vote
* Negative: Comparisons are done serially
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Under the hood

* TurKit is handles the MTurk API

» It generates web pages and CSS and hosts them on Amazon’s S3 server

* Nice additional features, like disabling of form elements while in preview mode
« DB is serialized using JSON
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TurkKit

« |IDE for writing TurKit scripts, running them, and automatically rerunning them
« TurKit “crashes” after publishing a HIT; re-running polls MTurk to check for result
* Provides controls for switching from sandbox into normal MTurk, clearing DB
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Projects
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Run Controls

L

Getting Started
A

Amazon Web Service Credentials
|
|

oy ! _
aws access key id: aws secret access key:
urKl AKIAJWIROTA3QHKOC

000000000000 000 0
new project

main.js
print ("Hello World"™)
print ("Your balance is:

" + mturkBase.getAccountBalance())

props

main.js var w = webpage.create (read("hit.html"))
output
for (var i = 0; i < 2; i+¥) {
db :
aew ile fork(function () {
) var hitId = mturk.createHIT ({
hit.html title : "Simple question”,
A desc : "Answer a simple question.",
OtherPro;ect reward : 0.01,
url = w

H
var hit = mturk.waitForHIT (hitId)

print ("Answer = " + hit.assignments[0].answer.choice)

mturk.approveAssignment (hit.assignments[0])
mturk.deleteHIT (hit)
}
API reference )
join()
example projects

hello world clone  webpage.remove (w)
iterative writing clone
brainstorming clone
sorting clone

|
Editor
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User

A
[ |

user@gmail.com
logout

output

Hello World
Your balance is:
Answer = 42

10000

crashed - waiting on hit:
1QQJIRVITXEVEZQM7TK62JHIJREVJIXTHA

crashed - ready to rerun

Y
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\

J

execution trace
;--'-create webpage
L?]-fork
--createHIT
H-waitForHIT
approveAssignment

. deleteHIT

=-fork
E'---createHIT

B waitForHIT
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Time for first $0.01 assighment to complete
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Dealing with latency

« Build the programming language to deal with high-latency operations

* Do something to optimize throughput on MTurk

* One (nefarious) example: Artificially inflate number of assignments in your HIT
to get front-page placement

All HITs
1-10 of 3390 Results
Sort by: | HITs Available (most first) : @

f&u{pastg[dic&cogﬂgste - second batch

Requester: {VJ ravosh Samari

HIT Exp

Time Al
o
" Cateqorize: Busin US, Level III

Requester: \rv\ CrowdSource

HIT Exp
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Time to execute once all HITs have been cached
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Pros and cons of TurkKit

« Con: Scalability — assumes local computation is minimal. Rerunning after each
HIT might be tedious if task is large

« Con: Parallel programming — not completely general in TurKit. once, fork and
join do not give enough state.

« Con: Experimental replicability — usually one downside of human computation is
that results with differ each time. Not so with TurKit!
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What experiments would you
run?
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