
Crowdsourcing and
Human Computation

Instructor: Chris Callison-Burch

Website: crowdsourcing-class.org

http://crowdsourcing-class.org

What will we cover in
this class (and should

you take it)?

Syllabus
• Taxonomy of crowdsourcing and human

computation
• The Mechanical Turk crowdsourcing platform
• Programming concepts for human

computation
• The economics of crowdsourcing
• Crowdsourcing and machine learning
• Applications to human computer interaction
• Crowdsourcing and social science

http://crowdsourcing-class.org/readings/intro.html
http://crowdsourcing-class.org/readings/intro.html
http://crowdsourcing-class.org/readings/platform.html
http://crowdsourcing-class.org/readings/programming.html
http://crowdsourcing-class.org/readings/programming.html
http://crowdsourcing-class.org/readings/econ.html
http://crowdsourcing-class.org/readings/ml.html
http://crowdsourcing-class.org/readings/hci.html
http://crowdsourcing-class.org/readings/social-science.html

Who should take this class
• Anyone who wants to be on the cutting

edge of this new field
• Entrepreneurial students who want to start

their own companies
• Students from the business school who

want to experiment with markets
• Students from the social sciences who want

to conduct large-scale studies with people

What will you get out of
this class?

• Understanding of an emerging field of CS
• Basic python and machine learning skills
• Ideas that you could transform into a

startup company or academic research
• A new way of thinking about collective

decision making companies and
countries

Collective
Intelligence

"Groups of individuals
doing things collectively
that seem intelligent”

Human
Computation

“A paradigm for utilizing
human processing power
to solve problems that
computers cannot yet
solve.”

Inter-related concepts

Crowd-
sourcing“Outsourcing a job traditionally

performed by an employee to an
undefined, generally large group
of people via open call.”

The
Sharing

Economy

“An economic
system in which
assets or services
are shared
between private
individuals, either
for free or for a
fee, typically by
means of the
Internet:.”

Data Mining “Applying algorithms
to extract patterns
from data.”

Crowdsourcing Companies

Human

“Outsourcing a job traditionally performed by an employee to
an undefined, generally large group of people via open call.”

Crowdsourcing Companies

Human

“Outsourcing a job traditionally performed by an employee to
an undefined, generally large group of people via open call.”

300k

200k
150k

100k

20k

Rewards over past 5 years

2009 2010 2011 2012 2013 2014

Top Requesters

XRDS � Ł �� �� � ���ŤŢţŢ� Ł ���� ĩţũ� Ł ��� ĩŤ 17

Following this approach, we could
find the new HITs being posted over
time, the completion rate of each HIT,
and the time that they disappear from
the market because they have either
been completed or expired, or because
a requester canceled and removed
the remaining HITs from the market.
(Identifying expired HITs is easy, as
we know the expiration time of a HIT.
Identifying cancelled HITs is a little
jh_Ya_[h$�M[�d[[Z�je�ced_jeh�j^[�kikWb�
completion rate of a HIT over time and
see if it is likely, at the time of disap-
pearance, for the remaining HITs to
have been completed within the time
since the last crawl.)

A shortcoming of this approach is that
it cannot measure the redundancy of the
posted HITs. So, if a single HIT needs to
be completed by multiple workers, we
can only observe it as a single HIT.

The data are also publicly avail-
able through the website http://www.
mturk-tracker.com [1].

From January 2009 through April
2010, we collected 165,368 HIT groups,
with 6,701,406 HITs total, from 9,436
requesters. The total value of the post-
ed HITs was $529,259. These numbers,
of course, do not account for the redun-
dancy of the posted HITs, or for HITs
that were posted and disappeared be-
tween our crawls. Nevertheless, they
should be good approximations (with-
in an order of magnitude) of the activ-
ity of the marketplace.

TOP REQUESTERS AND
FREQUENTLY POSTED TASKS
One way to understand what types of
tasks are being completed in the mar-
ketplace is to find the “top” requesters
and analyze the HITs that they post.
Table 1 shows the top requesters, based
on the total rewards of the HITs posted,
filtering out requesters that were active
only for a short period of time.

M[� YWd� i[[� j^Wj� j^[h[� Wh[� l[ho� \[m�
active requesters that post a significant
amount of tasks in the marketplace
and account for a large fraction of the
posted rewards. Following our mea-
surements, the top requesters listed in
Table 1 (which is 0.1 percent of the to-
tal requesters in our dataset), account
for more than 30 percent of the overall
activity of the market.

Given the high concentration of the

market, the type of tasks posted by
the requesters shows the type of tasks
that are being completed in the mar-
ketplace. Castingwords is the major
requester, posting transcription tasks
frequently. There are also two other
semi-anonymous requesters posting
transcription tasks as well.

Among the top requesters we also
see two mediator services, Dolores
Labs (aka Crowdflower) and Smart-
sheet.com, who post tasks on Mechan-
ical Turk on behalf of their clients.
Such services are essentially aggrega-
tors of tasks, and provide quality as-
surance services on top of Mechanical
Turk. The fact that they account for ap-
proximately 10 percent of the market
indicates that many users that are in-
terested in crowdsourcing prefer to use
an intermediary that address the con-
cerns about worker quality, and also
allow posting of complex tasks without
the need for programming.

M[�Wbie�i[[� j^Wj� \ekh�e\� j^[� jef�h[-
questers use Mechanical Turk in order
to create a variety of original content,
from product reviews, feature stories,
blog posts, and so on. (One requester,
“Paul Pullen,” uses Mechanical Turk to
paraphrase existing content, instead
of asking the workers to create content
from scratch.) Finally, we see that two
requesters use Mechanical Turk in or-
der to classify a variety of objects into
categories. This was the original task
for which Mechanical Turk was used
by Amazon.

The high concentration of the mar-
ket is not unusual for any online com-
munity. There is always a long tail of

participants that has significantly
lower activity than the top contribu-
tors. Figure 1 shows how this activity
is distributed, according to the value of
the HITs posted by each requester. The
x-axis shows the log2 of the value of
the posted HITs and the y-axis shows
what percentage of requesters has this
level of activity. As we can see, the dis-

Table 1: Top Requesters based on the total posted rewards available to a single
worker (January 2009–April 2010).
!"#$"%&"'()*(!"#$"%&"'(+,-"(./)0(1'2$3%(02&,4(/)0%(!"5,'6%(073"(28(&,%9%(

:;<)=<)>+?@!AB(!"#$%&'()*+#, -./01-, 21/345, 670/800, 9*"&#:*%;$%)&,

:C)!AD0EF)>GH>(<)=)*>#,?"@#, 5/323, 148/7-1, 643/050, A>+%"$)*, B)*,)$C>*,

>DE>#$>#,

:CIG;JK+/=J)LC(!)&$>&$F"=)*>, 5/578, 41/24., 650/127, !)&$>&$,'>&>*"$%)&,

:LLMAFNGO?FP;N(GH"*$#C>>$I:)H,!=%>&$#, 5/-82, 5.5/348, 652/8.3, A>+%"$)*, B)*,)$C>*,

>DE>#$>#,

:N?C/K)KQOHIL(J"E=,JE==>&, 3/.-4, 535/717, 655/5.3, !)&$>&$,*>K*%$%&',

:L@0);H:?0!R:H(!="##%BL,9C%#, 44., -.-/130, 60/3.7, M@N>:$,:="##%B%:"$%)&,

:L:PADJRSA<D=R(<"O>, 4/4-0, 2/870, 63/--., 9*"&#:*%;$%)&,

:*A@OTH+UVNVE(PE>#$%)&GK"H%, 20., 58/0.8, 64/.32, !)&$>&$, '>&>*"$%)&,

"&+,>O"=E"$%)&,

:*LK+:G!*FW+M(*>$"%=+"$", 551, 57./483, 64/55., M@N>:$,:="##%B%:"$%)&,

:C!B/TB0H/IA>+(!)&$>&$G;))=%&'I&>$, 777, 344, 60.2, !)&$>&$, '>&>*"$%)&,

"&+,>O"=E"$%)&,

:L*DTDL?SD=JBF(Q)>=,R"*O>L, 282, 282, 6.00, 9*"&#:*%;$%)&,

:CMI*@0J<:DR!>(S";C">=,AE+'>, 2-., 4/17., 67-., (>@#%$>,B>>+@":T,

,

!

!

!

!

!

!

Figure 1: Number of requesters vs. total
rewards posted.

A few requesters offer
most of the rewards

XRDS � Ł �� �� � ���ŤŢţŢ� Ł ���� ĩţũ� Ł ��� ĩŤ 17

Following this approach, we could
find the new HITs being posted over
time, the completion rate of each HIT,
and the time that they disappear from
the market because they have either
been completed or expired, or because
a requester canceled and removed
the remaining HITs from the market.
(Identifying expired HITs is easy, as
we know the expiration time of a HIT.
Identifying cancelled HITs is a little
jh_Ya_[h$�M[�d[[Z�je�ced_jeh�j^[�kikWb�
completion rate of a HIT over time and
see if it is likely, at the time of disap-
pearance, for the remaining HITs to
have been completed within the time
since the last crawl.)

A shortcoming of this approach is that
it cannot measure the redundancy of the
posted HITs. So, if a single HIT needs to
be completed by multiple workers, we
can only observe it as a single HIT.

The data are also publicly avail-
able through the website http://www.
mturk-tracker.com [1].

From January 2009 through April
2010, we collected 165,368 HIT groups,
with 6,701,406 HITs total, from 9,436
requesters. The total value of the post-
ed HITs was $529,259. These numbers,
of course, do not account for the redun-
dancy of the posted HITs, or for HITs
that were posted and disappeared be-
tween our crawls. Nevertheless, they
should be good approximations (with-
in an order of magnitude) of the activ-
ity of the marketplace.

TOP REQUESTERS AND
FREQUENTLY POSTED TASKS
One way to understand what types of
tasks are being completed in the mar-
ketplace is to find the “top” requesters
and analyze the HITs that they post.
Table 1 shows the top requesters, based
on the total rewards of the HITs posted,
filtering out requesters that were active
only for a short period of time.

M[� YWd� i[[� j^Wj� j^[h[� Wh[� l[ho� \[m�
active requesters that post a significant
amount of tasks in the marketplace
and account for a large fraction of the
posted rewards. Following our mea-
surements, the top requesters listed in
Table 1 (which is 0.1 percent of the to-
tal requesters in our dataset), account
for more than 30 percent of the overall
activity of the market.

Given the high concentration of the

market, the type of tasks posted by
the requesters shows the type of tasks
that are being completed in the mar-
ketplace. Castingwords is the major
requester, posting transcription tasks
frequently. There are also two other
semi-anonymous requesters posting
transcription tasks as well.

Among the top requesters we also
see two mediator services, Dolores
Labs (aka Crowdflower) and Smart-
sheet.com, who post tasks on Mechan-
ical Turk on behalf of their clients.
Such services are essentially aggrega-
tors of tasks, and provide quality as-
surance services on top of Mechanical
Turk. The fact that they account for ap-
proximately 10 percent of the market
indicates that many users that are in-
terested in crowdsourcing prefer to use
an intermediary that address the con-
cerns about worker quality, and also
allow posting of complex tasks without
the need for programming.

M[�Wbie�i[[� j^Wj� \ekh�e\� j^[� jef�h[-
questers use Mechanical Turk in order
to create a variety of original content,
from product reviews, feature stories,
blog posts, and so on. (One requester,
“Paul Pullen,” uses Mechanical Turk to
paraphrase existing content, instead
of asking the workers to create content
from scratch.) Finally, we see that two
requesters use Mechanical Turk in or-
der to classify a variety of objects into
categories. This was the original task
for which Mechanical Turk was used
by Amazon.

The high concentration of the mar-
ket is not unusual for any online com-
munity. There is always a long tail of

participants that has significantly
lower activity than the top contribu-
tors. Figure 1 shows how this activity
is distributed, according to the value of
the HITs posted by each requester. The
x-axis shows the log2 of the value of
the posted HITs and the y-axis shows
what percentage of requesters has this
level of activity. As we can see, the dis-

Table 1: Top Requesters based on the total posted rewards available to a single
worker (January 2009–April 2010).
!"#$"%&"'()*(!"#$"%&"'(+,-"(./)0(1'2$3%(02&,4(/)0%(!"5,'6%(073"(28(&,%9%(

:;<)=<)>+?@!AB(!"#$%&'()*+#, -./01-, 21/345, 670/800, 9*"&#:*%;$%)&,

:C)!AD0EF)>GH>(<)=)*>#,?"@#, 5/323, 148/7-1, 643/050, A>+%"$)*, B)*,)$C>*,

>DE>#$>#,

:CIG;JK+/=J)LC(!)&$>&$F"=)*>, 5/578, 41/24., 650/127, !)&$>&$,'>&>*"$%)&,

:LLMAFNGO?FP;N(GH"*$#C>>$I:)H,!=%>&$#, 5/-82, 5.5/348, 652/8.3, A>+%"$)*, B)*,)$C>*,

>DE>#$>#,

:N?C/K)KQOHIL(J"E=,JE==>&, 3/.-4, 535/717, 655/5.3, !)&$>&$,*>K*%$%&',

:L@0);H:?0!R:H(!="##%BL,9C%#, 44., -.-/130, 60/3.7, M@N>:$,:="##%B%:"$%)&,

:L:PADJRSA<D=R(<"O>, 4/4-0, 2/870, 63/--., 9*"&#:*%;$%)&,

:*A@OTH+UVNVE(PE>#$%)&GK"H%, 20., 58/0.8, 64/.32, !)&$>&$, '>&>*"$%)&,

"&+,>O"=E"$%)&,

:*LK+:G!*FW+M(*>$"%=+"$", 551, 57./483, 64/55., M@N>:$,:="##%B%:"$%)&,

:C!B/TB0H/IA>+(!)&$>&$G;))=%&'I&>$, 777, 344, 60.2, !)&$>&$, '>&>*"$%)&,

"&+,>O"=E"$%)&,

:L*DTDL?SD=JBF(Q)>=,R"*O>L, 282, 282, 6.00, 9*"&#:*%;$%)&,

:CMI*@0J<:DR!>(S";C">=,AE+'>, 2-., 4/17., 67-., (>@#%$>,B>>+@":T,

,

!

!

!

!

!

!

Figure 1: Number of requesters vs. total
rewards posted.

HITs by price

high price only contain a single HIT,
while the HITgroups with large num-
ber of HITs have a low price. Therefore,
if we compute the distribution of HITs
(not HITgroups) according to the price,
we can see that 25 percent of the HITs
created on Mechanical Turk have a
price tag of just $0.01, 70 percent have a
reward of $0.05 or less, and 90 percent
pay less than $0.10. This analysis con-
firms the common feeling that most of
the tasks on Mechanical Turk have tiny
rewards.

Of course, this analysis simply
scratches the surface of the bigger
problem: How can we automatically
price tasks, taking into consideration
the nature of the task, the existing
competition, the expected activity level
of the workers, the desired completion
time, the tenure and prior activity of
the requester, and many other factors?
How much should we pay for an im-
age tagging task, for 100,000 images
in order to get it done within 24 hours?
Building such models will allow the
execution of crowdsourcing tasks to
become easier for people that simply
want to “get things done” and do not
want to tune and micro-optimize their
crowdsourcing process.

POSTING AND SERVING PROCESSES
M^Wj�_i�j^[�jof_YWb�WYj_l_jo�_d�j^[�7CJ�
cWha[jfbWY[5�M^Wj�_i�j^[�lebkc[�e\�j^[�
transactions? These are very common
questions from people who are inter-
ested in understanding the size of the
market and its demonstrated capacity
for handling big tasks. (Detecting the
true capacity of the market is a more
involved task than simply measuring
its current serving rate. Many workers
may show up only when there is a sig-

nificant amount of work for them, and
be dormant under normal loads.)

One way to approach such questions
is to examine the task posting and task
completion activity on AMT. By study-
ing the posting activity we can under-
stand the demand for crowdsourcing,
and the completion rate shows how
fast the market can handle the de-
mand. To study these processes, we
computed, for each day, the value of
tasks being posted by AMT requesters
and the value of the tasks that got com-
pleted in each day.

M[� fh[i[dj� Òhij� Wd� WdWboi_i� e\� j^[�
two processes (posting and comple-
tion), ignoring any dependencies on
task-specific and time-specific factors.
Figure 3 illustrates the distributions of
the posting and completion process-
es. The two distributions are similar
but we see that, in general, the rate of
completion is slightly higher than the
rate of arrival. This is not surprising
and is a required stability condition. If
the completion rate was lower than the
arrival rate, then the number of incom-
plete tasks in the marketplace would
go to infinity.

M[�eXi[hl[Z�j^Wj�j^[�c[Z_Wd�Whh_lWb�
rate is $1,040 per day and the median
completion rate is $1,155 per day. If we
assume that the AMT marketplace be-
haves like an M/M/1 queuing system,
and using basic queuing theory, we can
see that a task worth $1 has an average
completion time of 12.5 minutes, re-
sulting in an effective hourly wage of
$4.80.

Of course, this analysis is an over-
simplification of the actual process.
The tasks are not completed in a first-
in, first-out manner, and the comple-
tion rate is not independent of the ar-

rival rate. In reality, workers pick tasks
following personal preferences or by
the AMT interface. For example Chil-
ton et al. [4] indicated that most work-
ers use two of the main task sorting
mechanisms provided by AMT to find
and complete tasks (“recently posted”
and “largest number of HITs” orders).
Furthermore, the completion rate is
not independent of the arrival rate.

M^[d� j^[h[� Wh[� cWdo� jWiai� WlW_b-
able, more workers come to complete
tasks, as there are more opportunities
to find and work for bigger tasks, as op-

posed to working for one-time HITs. As
a simple example, consider the depen-
dency of posting and completion rates
on the day of the week. Figure 4 illus-
trates the results.

The posting activity from the re-
questers is significantly lower over the
weekends and is typically maximized
on Tuesdays. This can be rather eas-
ily explained. Since most requesters
are corporations and organizations,
most of the tasks are being posted dur-
ing normal working days. However,
the same does not hold for workers.
The completion activity is rather unaf-
fected by the weekends. The only day
on which the completion rate drops is
on Monday, and this is most probably
a side-effect of the lower posting rate
over the weekends. (There are fewer
tasks available for completion on Mon-
day, due to the lower posting rate over
the weekend.)

An interesting open question is to
understand better how to model the
cWha[jfbWY[$�Meha�ed�gk[k_d]�j^[eho�
for modeling call centers is related and
can help us understand better the dy-

19XRDS � Ł �� �� � ���ŤŢţŢ� Ł ���� ĩţũ� Ł ��� ĩŤ

! !
!

Figure 2: Distribution of HITgroups and HITs according to HIT Price.

!

!

!

Figure 3: The distribution of the arrival
and completion rate on the AMT mar-
ketplace, as a function of the USD ($)
value of the posted/completed HITs.

I tried one of his tasks to see, I gave it up at 4 minutes in and
about 2/3 of the way through. For the whole hit, I'd have taken
about 6 minutes. 10 hits an hour - $1.70 an hour. Restricted to
U.S. residents.

This is far too low to be considered a fair wage for a U.S.
resident. My performance may be very far off from what others
can do. Perhaps I took 4 times or more as long as an average
worker would.

My complaint is that any U.S. requester knows what wage
rate is required for a U.S. resident to survive. We may not
agree on an exact number. But as they say, I know a fair
wage when I see it, and this is not it.

Mturk is actually much smaller than what it can appear to be.
Something close to requester monopoly has the power to
keep wages low. Requester co-operation, explicit or implicit,
reinforces this.

Chris Callison-Burch is not unaware, I think, of the
mechanics of the wage structure of Mturk.

qualitative v quantitative
TurkOpticon's qualitative

attributes
CrowdWorker's quantitative

equivalents
promptness: How promptly has this

requester approved your work and
paid?

Expected time to payment: On average, how
much time elapses between submitting work to

this Requester and receiving payment?

generosity: How well has this requester
paid for the amount of time their HITs

take?

Average hourly rate: What is the average
hourly rate that other Turker make when they do

this requester's HITs?

fairness: How fair has this requester
been in approving or rejecting your

work?

Approval/rejection rates: What percent of
assignments does this Requester approve?

What percent of first-time Workers get any work
rejected?

communicativity: How responsive has
this requester been to communications

or concerns you have raised?

Reasons for rejection: Archive of all of the
reasons for Workers being rejected or blocked

by this Requester.

Ethics

• Fair pay for workers
• Legal implications of sharing economy
• Ethics of companies like Uber
• Guidelines for human subjects research

Classification System for
Human Computation

• Motivation
• Quality Control
• Aggregation
• Human Skill
• Process Order
• Task-request Cardinality

Motivation
How can we motivate people to participate?

Even with a low barrier to entry (anyone with an
computer can contribute) we still need to make a case

why they should contribute.
• Pay
• Altruism
• Reputation
• Enjoyment
• Implicit work

Quality Control
• Reputation systems
• Redundancy and agreement
• Gold standards
• 2nd pass reviewing
• Statistical models
• Defensive task design
• Economic incentives

Aggregation
• Wisdom of Crowds

• Voting
• Prediction markets

• Collection

• Search
• Iterative improvement
• Machine learning

Human skill

• Visual recognition
• Language understanding
• Translation
• Reasoning
• Creativity

Avoiding	die*ng	to	
prevent	from	flu

absten*on	from	
die*ng	in	order	to	
avoid	Flu

Abstain	from	decrease	
ea*ng	in	order	to	
escape	from	flue

In	order	to	be	safer	
from	flu	quit	die*ng

This	research	of	
American	scien*sts	
came	in	front	a<er	
experimen*ng	on	
mice.

This	research	from	
the	American	
Scien*sts	have	come	
up	a<er	the	
experiments	on	rats.

This	research	of	
American	scien*sts	
was	shown	a<er	
many	experiments	
on	mouses.

According	to	the	
American	Scien*st	
this	research	has	
come	out	a<er	much	
experimenta*ons	on	
rats.

Experiments	proved	
that	mice	on	a	lower	
calorie	diet	had	
compara*vely	less	
ability	to	fight	the	
flu	virus.

in	has	been	proven	
from	experiments	
that	rats	put	on	diet	
with	less	calories	
had	less	ability	to	
resist	the	Flu	virus.

It	was	proved	by	
experiments	the	low	
calories	eaters	
mouses	had	low	
defending	power	for	
flue	in	ra*o.

Experimentaions	have	
proved	that	those	rats	
on	less	calories	diet	
have	developed	a	
tendency	of	not	
overcoming	the	flu	
virus.

research	has	proven	
this	old	myth	wrong	
that	its	beDer	to	fast	
during	fever.

Research	disproved	
the	old	axiom	that	"	
It	is	beDer	to	fast	
during	fever"

The	research	proved	
this	old	talk	that	
decrease	ea*ng	is	
useful	in	fever.

This	Research	has	
proved	the	very	old	
saying	wrong	that	it	
is	good	to	starve	
while	in	fever.�27

Avoiding	die*ng	to	
prevent	from	flu

absten*on	from	
die*ng	in	order	to	
avoid	Flu

Abstain	from	decrease	
ea*ng	in	order	to	
escape	from	flue

In	order	to	be	safer	
from	flu	quit	die*ng

This	research	of	
American	scien*sts	
came	in	front	a<er	
experimen*ng	on	
mice.

This	research	from	
the	American	
Scien*sts	have	come	
up	a<er	the	
experiments	on	rats.

This	research	of	
American	scien*sts	
was	shown	a<er	
many	experiments	
on	mouses.

According	to	the	
American	Scien*st	
this	research	has	
come	out	a<er	much	
experimenta*ons	on	
rats.

Experiments	proved	
that	mice	on	a	lower	
calorie	diet	had	
compara*vely	less	
ability	to	fight	the	
flu	virus.

in	has	been	proven	
from	experiments	
that	rats	put	on	diet	
with	less	calories	
had	less	ability	to	
resist	the	Flu	virus.

It	was	proved	by	
experiments	the	low	
calories	eaters	
mouses	had	low	
defending	power	for	
flue	in	ra*o.

Experimentaions	have	
proved	that	those	rats	
on	less	calories	diet	
have	developed	a	
tendency	of	not	
overcoming	the	flu	
virus.

research	has	proven	
this	old	myth	wrong	
that	its	beDer	to	fast	
during	fever.

Research	disproved	
the	old	axiom	that	"	
It	is	beDer	to	fast	
during	fever"

The	research	proved	
this	old	talk	that	
decrease	ea*ng	is	
useful	in	fever.

This	Research	has	
proved	the	very	old	
saying	wrong	that	it	
is	good	to	starve	
while	in	fever.�28

Avoiding	die*ng	to	
prevent	from	flu

absten*on	from	
die*ng	in	order	to	
avoid	Flu

Abstain	from	decrease	
ea*ng	in	order	to	
escape	from	flue

In	order	to	be	safer	
from	flu	quit	die*ng

This	research	of	
American	scien*sts	
came	in	front	a<er	
experimen*ng	on	
mice.

This	research	from	
the	American	
Scien*sts	have	come	
up	a<er	the	
experiments	on	rats.

This	research	of	
American	scien*sts	
was	shown	a<er	
many	experiments	
on	mouses.

According	to	the	
American	Scien*st	
this	research	has	
come	out	a<er	much	
experimenta*ons	on	
rats.

Experiments	proved	
that	mice	on	a	lower	
calorie	diet	had	
compara*vely	less	
ability	to	fight	the	
flu	virus.

in	has	been	proven	
from	experiments	
that	rats	put	on	diet	
with	less	calories	
had	less	ability	to	
resist	the	Flu	virus.

It	was	proved	by	
experiments	the	low	
calories	eaters	
mouses	had	low	
defending	power	for	
flue	in	ra*o.

Experimentaions	have	
proved	that	those	rats	
on	less	calories	diet	
have	developed	a	
tendency	of	not	
overcoming	the	flu	
virus.

research	has	proven	
this	old	myth	wrong	
that	its	beDer	to	fast	
during	fever.

Research	disproved	
the	old	axiom	that	"	
It	is	beDer	to	fast	
during	fever"

The	research	proved	
this	old	talk	that	
decrease	ea*ng	is	
useful	in	fever.

This	Research	has	
proved	the	very	old	
saying	wrong	that	it	
is	good	to	starve	
while	in	fever.�29

New Programming
Languages Concepts

TurKit: A programming
language for the crowd

ideas	=	[]	
for	(var	i	=	0;	i	<	5;	i++)	{	
idea	=	mturk.prompt(
"What’s	fun	to	see	in	New	York	City? Ideas	so	
far:	"	+	ideas.join(",	"))	
ideas.push(idea)	
}
ideas.sort(function	(a,	b)	{	

v	=	mturk.vote("Which	is	better?",	[a,	b])	
return	v	==	a	?	-1	:	1
})

New Programming
Languages Concepts

• Latency
• Cost
• Parallelization
• Non-determinism
• Iterative improvement

New keyword once

• Costly operations can be marked in a
TurKit program with keyword once

• once denotes that an operation should
only be executed once across all runs of
a program

Quicksort on MTurk
compare(a,	b)	

				hitId	←	once createHIT(...a...b...)		

				result	←	once getHITResult(hitId)		
				return	(result	says	a	<	b)

• Subsequent runs of the program will
check the database before performing
these operations

Quicksort for kittens

>

>

<

<

>

>

> <

>

<

>

When should you mark
a function with once?

• High cost - This is its main usage.
Whenever a fn is high-cost in terms of
money or time, once saves the day

When should you mark
a function with once?

• Non-determinism - storing results in DB
assumes that the program executes in a
deterministic way

✓

X X X X✓

Wizard of Oz in HCI

 Automatic clustering generally helps
separate different kinds of records that
need to be edited differently, but it isn't
perfect. Sometimes it creates more
clusters than needed, because the
differences in structure aren't important
to the user's particular editing task. For
example, if the user only needs to edit
near the end of each line, then
differences at the start of the line are
largely irrelevant, and it isn't necessary to
split base on those differences.
Conversely, sometimes the clustering
isn't fine enough, leaving heterogeneous
clusters that must be edited one line at a
time. One solution to this problem would
be to let the user rearrange the clustering
manually, perhaps using drag-and-drop
to merge and split clusters. Clustering
and selection generalization would also
be improved by recognizing common test
structure like URLs, filenames, email
addresses, dates, times, etc.

Automatic clustering generally helps
separate different kinds of records that
need to be edited differently, but it isn't
perfect. Sometimes it creates more
clusters than needed, because the
differences in structure aren't important
to the user's particular editing task. For
example, if the user only needs to edit
near the end of each line, then
differences at the start of the line are
largely irrelevant, and it isn't necessary to
split base on those differences.
Conversely, sometimes the clustering
isn't fine enough, leaving heterogeneous
clusters that must be edited one line at a
time. One solution to this problem would
be to let the user rearrange the clustering
manually, using drag-and-drop edits.
Clustering and selection generalization
would also be improved by recognizing
common test structure like URLs,
filenames, email addresses, dates, times,
etc.

 Automatic clustering generally helps
separate different kinds of records that
need to be edited differently, but it isn't
perfect. Sometimes it creates more
clusters than needed, because the
differences in structure aren't important
to the user's particular editing task. For
example, if the user only needs to edit
near the end of each line, then
differences at the start of the line are
largely irrelevant, and it isn't necessary to
split base on those differences.
Conversely, sometimes the clustering
isn't fine enough, leaving heterogeneous
clusters that must be edited one line at a
time. One solution to this problem would
be to let the user rearrange the clustering
manually, perhaps using drag-and-drop
to merge and split clusters. Clustering
and selection generalization would also
be improved by recognizing common test
structure like URLs, filenames, email
addresses, dates, times, etc.

Automatic clustering generally helps
separate different kinds of records that
need to be edited differently, but it isn't
perfect. Sometimes it creates more
clusters than needed, because the
differences in structure aren't relevant to
a specific task. Conversely, sometimes
the clustering isn't fine enough, leaving
heterogeneous clusters that must be
edited one line at a time. One solution to
this problem would be to let the user
rearrange the clustering manually,
perhaps using drag-and-drop to merge
and split clusters. Clustering and
selection generalization would also be
improved by recognizing common test
structure like URLs, filenames, email
addresses, dates, times, etc.

 Automatic clustering generally helps
separate different kinds of records that
need to be edited differently, but it isn't
perfect. Sometimes it creates more
clusters than needed, because the
differences in structure aren't important
to the user's particular editing task. For
example, if the user only needs to edit
near the end of each line, then
differences at the start of the line are
largely irrelevant, and it isn't necessary to
split base on those differences.
Conversely, sometimes the clustering
isn't fine enough, leaving heterogeneous
clusters that must be edited one line at a
time. One solution to this problem would
be to let the user rearrange the clustering
manually, perhaps using drag-and-drop
to merge and split clusters. Clustering
and selection generalization would also
be improved by recognizing common test
structure like URLs, filenames, email
addresses, dates, times, etc.

Automatic clustering generally helps
separate different kinds of records that
need to be edited differently, but it isn't
perfect. Sometimes it creates more
clusters than needed, as structure
differences aren't important to the editing
task. Conversely, sometimes the
clustering isn't fine enough, leaving
heterogeneous clusters that must be
edited one line at a time. One solution to
this problem would be to let the user
rearrange the clustering manually,
perhaps using drag-and-drop to merge
and split clusters. Clustering and
selection generalization would also be
improved by recognizing common test
structure like URLs, filenames, email
addresses, dates, times, etc.

 Automatic clustering generally helps
separate different kinds of records that
need to be edited differently, but it isn't
perfect. Sometimes it creates more
clusters than needed, because the
differences in structure aren't important
to the user's particular editing task. For
example, if the user only needs to edit
near the end of each line, then
differences at the start of the line are
largely irrelevant, and it isn't necessary to
split base on those differences.
Conversely, sometimes the clustering
isn't fine enough, leaving heterogeneous
clusters that must be edited one line at a
time. One solution to this problem would
be to let the user rearrange the clustering
manually, perhaps using drag-and-drop
to merge and split clusters. Clustering
and selection generalization would also
be improved by recognizing common test
structure like URLs, filenames, email
addresses, dates, times, etc.

Automatic clustering generally helps
separate different kinds of records that
need to be edited differently, but it isn't
perfect. Sometimes it creates more
clusters than needed, as structure
differences aren't important to the editing
task. Conversely, sometimes the
clustering isn't fine enough, leaving
heterogeneous clusters that must be
edited one line at a time. One solution to
this problem would be to let the user
rearrange the clustering manually using
drag-and-drop edits. Clustering and
selection generalization would also be
improved by recognizing common test
structure like URLs, filenames, email
addresses, dates, times, etc.

The Human Macro

When the crowd is finished, Soylent calls out the edited
sections with a purple dashed underline. If the user clicks
on the error, a drop-down menu explains the problem and
offers a list of alternatives. By clicking on the desired alter-
native, the user replaces the incorrect text with an option of
his or her choice. If the user hovers over the Error Descrip-
tions menu item, the popout menu suggests additional
second-opinions of why the error was called out.

The Human Macro: Natural Language Crowd Scripting
Embedding crowd workers in an interface allows us to re-
consider designs for short end-user programming tasks.
Typically, users need to translate their intentions into algo-
rithmic thinking explicitly via a scripting language or im-
plicitly through learned activity [6]. But tasks conveyed to
humans can be written in a much more natural way. While
natural language command interfaces continue to struggle
with unconstrained input over a large search space, humans
are good at understanding written instructions.

The Human Macro is Soylent’s natural language command
interface. Soylent users can use it to request arbitrary work
quickly in human language. Launching the Human Macro
opens a request form (Figure 3). The design challenge here
is to ensure that the user creates tasks that are scoped cor-
rectly for a Mechanical Turk worker. We wish to prevent
the user from spending money on a buggy command.

The form dialog is split in two mirrored pieces: a task entry
form on the left, and a preview of what the Turker will see
on the right. The preview contextualizes the user’s request,
reminding the user he is writing something akin to a Help
Wanted or Craigslist advertisement. The form suggests that
the user provide an example input and output, which is an
effective way to clarify the task requirements to workers. If
the user selected text before opening the dialog, he has the
option to split the task by each sentence or paragraph, so
(for example) the task might be parallelized across all en-
tries on a list. The user then chooses how many separate
Turkers he would like to complete the task. The Human
Macro helps debug the task by allowing a test run on one
sentence or paragraph.

The user chooses whether the Turkers’ work should replace
the existing text or just annotate it. If the user chooses to
replace, the Human Macro underlines the text in purple and
enables drop-down substitution like the Crowdproof inter-
face. If the user chooses to annotate, the feedback populates

comment bubbles anchored on the selected text by utilizing
Word’s reviewing comments interface.

TECHNIQUES FOR PROGRAMMING CROWDS
This section characterizes the challenges of leveraging
crowd labor for open-ended document editing tasks. We
introduce the Find-Fix-Verify pattern to improve output
quality in the face of uncertain worker quality. Over the
past year, we have performed and documented dozens of
experiments on Mechanical Turk.5

Challenges in Programming with Crowd Workers

 For this project alone,
we have interacted with 8809 Turkers across 2256 different
tasks. We draw on this experience in the sections to follow.

We are primarily concerned with tasks where workers di-
rectly edit a user’s data in an open-ended manner. These
tasks include shortening, proofreading, and user-requested
changes such as address formatting. In our experiments, it
is evident that many of the raw results that Turkers produce
on such tasks are unsatisfactory. As a rule-of-thumb, rough-
ly 30% of the results from open-ended tasks are poor. This
“30% rule” is supported by the experimental section of this
paper as well. Clearly, a 30% error rate is unacceptable to
the end user. To address the problem, it is important to un-
derstand the nature of unsatisfactory responses.
High Variance of Effort
Turkers exhibit high variance in the amount of effort they
invest in a task. We might characterize two useful personas
at the ends of the effort spectrum, the Lazy Turker and the
Eager Beaver. The Lazy Turker does as little work as ne-
cessary to get paid. For example, when asked to proofread
the following error-filled paragraph from a high school
essay site,6

A first challenge is thus to discourage or prevent workers
from such behavior. Kittur et al. attacked the problem of

 a Lazy Turker inserted only a single character
to correct a spelling mistake. The change is highlighted:
The theme of loneliness features throughout many scenes in Of Mice and
Men and is often the dominant theme of sections during this story. This
theme occurs during many circumstances but is not present from start to
finish. In my mind for a theme to be pervasive is must be present during
every element of the story. There are many themes that are present most
of the way through such as sacrifice, friendship and comradeship. But in
my opinion there is only one theme that is present from beginning to
end, this theme is pursuit of dreams.

5 http://groups.csail.mit.edu/uid/deneme/
6 http://www.essay.org/school/english/ofmiceandmen.txt

Figure 3. The Human Macro is an end-user programming
interface for automating document manipulations. The left
half is the user’s authoring interface; the right half is a pre-
view of what the Turker will see.

Figure 2. Crowdproof is a human-augmented proofreader.
The drop-down explains the problem (blue title) and suggests
fixes (gold selection).

Human Macro Examples
Request

“Pick out keywords from the paragrah like
Yosemite, rock, half dome, park. Go to a site

which has CC licensed images [...]”

Input
When I first visited Yosemite State Park in

California, I was a boy. I was amazed by how
big everything was [...]

Output

What color is this pillow? What denomination is
this bill?

Do you see picnic tables
across the parking lot?

What temperature is my
oven set to?

Can you please tell me
what this can is?

What kind of drink does
this can hold?

(89s) I can’t tell.
(105s) multiple shades
of soft green, blue and
gold

(24s) 20
(29s) 20

(13s) no
(46s) no

(69s) it looks like 425
degrees but the image
is difficult to see.
(84s) 400
(122s) 450

(183s) chickpeas.
(514s) beans
(552s) Goya Beans

(91s) Energy
(99s) no can in the
picture
(247s) energy drink

Figure 2: Six questions asked by participants, the photographs they took, and answers received with latency in seconds.

the total time required to answer a question. quikTurkit also
makes it easy to keep a pool of workers of a given size contin-
uously engaged and waiting, although workers must be paid
to wait. In practice, we have found that keeping 10 or more
workers in the pool is doable, although costly.

Most Mechanical Turk workers find HITs to do using the
provided search engine3. This search engine allows users to
view available HITs sorted by creation date, the number of
HITs available, the reward amount, the expiration date, the
title, or the time alloted for the work. quikTurkit employs
several heuristics for optimizing its listing in order to obtain
workers quickly. First, it posts many more HITs than are
actually required at any time because only a fraction will ac-
tually be picked up within the first few minutes. These HITs
are posted in batches, helping quikTurkit HITs stay near the
top. Finally, quikTurkit supports posting multiple HIT vari-
ants at once with different titles or reward amounts to cover
more of the first page of search results.

VizWiz currently posts a maximum of 64 times more HITs
than are required, posts them at a maximum rate of 4 HITs
every 10 seconds, and uses 6 different HIT variants (2 titles
⇥ 3 rewards). These choices are explored more closely in the
context of VizWiz in the following section.

FIELD DEPLOYMENT
To better understand how VizWiz might be used by blind
people in their everyday lives, we deployed it to 11 blind
iPhone users aged 22 to 55 (3 female). Participants were re-
cruited remotely and guided through using VizWiz over the
phone until they felt comfortable using it. The wizard inter-
face used by VizWiz speaks instructions as it goes, and so
participants generally felt comfortable using VizWiz after a
single use. Participants were asked to use VizWiz at least
once a day for one week. After each answer was returned,
participants were prompted to leave a spoken comment.

quikTurkit used the following two titles for the jobs that it
posted to Mechanical Turk: “3 Quick Visual Questions” and
“Answer Three Questions for A Blind Person.” The reward
3Available at mturk.com

distribution was set such that half of the HITs posted paid
$0.01, and a quarter paid $0.02 and $0.03 each.

Asking Questions Participants asked a total of 82 questions
(See Figure 2 for participant examples and accompanying
photographs). Speech recognition correctly recognized the
question asked for only 13 of the 82 questions (15.8%), and
55 (67.1%) questions could be answered from the photos
taken. Of the 82 questions, 22 concerned color identifica-
tion, 14 were open ended “what is this?” or “describe this
picture” questions, 13 were of the form “what kind of (blank)
is this?,” 12 asked for text to be read, 12 asked whether a par-
ticular object was contained within the photograph, 5 asked
for a numerical answer or currency denomination, and 4 did
not fit into these categories.

Problems Taking Pictures 9 (11.0%) of the images taken
were too dark for the question to be answered, and 17 (21.0%)
were too blurry for the question to be answered. Although a
few other questions could not be answered due to the pho-
tos that were taken, photos that were too dark or too blurry
were the most prevalent reason why questions could not be
answered. In the next section, we discuss a second iteration
on the VizWiz prototype that helps to alert users to these par-
ticular problems before sending the questions to workers.

Answers Overall, the first answer received was correct in
71 of 82 cases (86.6%), where “correct” was defined as either
being the answer to the question or an accurate description
of why the worker could not answer the question with the
information contained within the photo provided (i.e., “This
image is too blurry”). A correct answer was received in all
cases by the third answer.

The first answer was received across all questions in an aver-
age of 133.3 seconds (SD=132.7), although the latency re-
quired varied dramatically based on whether the question
could actually be answered from the picture and on whether
the speech recognition accurately recognized the question
(Figure 4). Workers took 105.5 seconds (SD=160.3) on av-
erage to answer questions that could be answered by the pro-
vided photo compared to 170.2 seconds (SD=159.5) for those

VizWiz: Answers to Visual
Questions for Blind Users

Know when work is
imminent

61 seconds Start app, take picture

71 seconds Record the question

78 seconds Press send

221 seconds Wait for response

Start
recruiting
workers

Maintain a work pool
• TurKit also experimented with maintaining a

group of workers, even when there was no
work

• Created dummy assignments from past
assignments, to ensure work

• When a new request arrived a dummy was
replaced with the real request

• Can be costly to constaintly maintain a pool

Retainer model
• Alternate to maintaining worker pool with

dummy tasks
• Hire crowd workers in advance, and pay

them a small amount to wait for work to
come online

• All them to pursue other work while waiting
• Alert them when our task is ready with a

popup box, and pay them for that work too

Study 2: Alert Design
While Study 1’s results are already good enough to get a
crowd quite quickly, can we improve on them by changing
the reason that workers would pay attention? Can we incen-
tivize the slow workers to move more quickly?
We investigated design and financial incentives to shift the
curve so that more workers came within the first 2–3 se-
conds. We used the 12¢ 10-minute retainer condition from
Study 1, which exhibited a low completion rate and a slow-
er arrival rate. The alert condition functioned as in Study 1,
with a Javascript alert and audio chime. Bonuses can be
powerful incentives [19], so we designed a reward condi-
tion that paid workers a 3¢ bonus if they dismissed the alert
within two seconds. Two seconds is short enough to be
challenging, but not so short as to be out of reach. To keep
workers’ attention on the page, we created a game condi-
tion that let workers optionally play Tetris during the wait-
ing period. Finally, to isolate the effectiveness of the Javas-
cript alert, we created a baseline condition that displayed a
large Go button but did not use an audio or Javascript alert.
We hypothesized that the bonus and game conditions might
improve response time and completion rate.
For Study 2, we implemented a between-subjects design by
randomly assigning each worker to a condition for the same
verb-selection task. We posted tasks for four hours per day
over four days. Workers completed 1913 tasks — we re-
moved 90 for poor work quality.
Results. Paying a small reward for quick reactions had a
strong positive impact on response time (Figure 3). In the
reward condition, 61% of workers responded within two
seconds vs. 25% in the alert condition, and 74% responded
within three seconds vs. 50% in the alert condition. Rough-
ly speaking, the ten-minute retainer with reward had similar
performance to the two-minute retainer without reward. In
addition, workers in the reward condition completed 2.25
times as many tasks as those in the alert condition (734 vs.

325), suggesting that the small bonus has a disproportion-
ately large impact on work volume. Predictably, the base-
line condition without the alert dialog performed poorly,
with 19% returning within three seconds. The game was
not very popular (5.7% of completed tasks cleared a row in
Tetris), but had a small positive impact on reaction times.
Retainer Model Discussion
Our data suggest that the retainer model can summon a
crowd two seconds after the request is made. In exchange
for a small fee, the retainer model recalls 50% of its work-
ers in two seconds and 75% in three seconds. Though reac-
tion times worsen as the retainer time increases, a small
reward for quick response negates the problem. Our exper-
iment commonly produced 10–15 workers on retainer at
once, suggesting that users could fairly reliably summon a
crowd of ten within three seconds. Applications with an
early indication that the user will want help (for example, a
mouseover on the icon or an “Are You Sure?” dialog) can
eliminate even this delay by alerting workers in advance.
The cost of the retainer model is attractive because it pays
workers a small amount to wait, rather than spending mon-
ey to repeat old tasks. The cost of the retainer model de-
pends on the desired arrival time !, the empirical arrival
distribution !(!""#$% ≤ !) as in Figure 2, and the desired
workers !. The number of retainer workers ! needed is:

! = !
!(!""#$% ≤ !)

For example, to recruit 5 workers within 3 seconds in the
ten-minute retainer with reward, the system should place 8
workers on retainer (rounded from 7.8), then expect that 7
will return to complete the task and 4 will earn rewards.
Assuming that we set the retainer length longer than the
expected time period between requests !, the hourly (60-
minute) cost of the retainer model depends on the retainer
wage per minute !!, and the base cost for the task !!:

Figure 3. A small reward for fast response (red) led workers
in a ten-minute retainer to respond as quickly as those on a
two-minute retainer without reward (Figure 2, red). N=1913.

 Baseline Alert Game Reward
Median 36.66 s 3.01 s 2.55 s 1.68 s
3rd quartile — 6.92 s 5.01 s 3.07 s
Completion 64.2% 76.5% 76.7% 85.5%

Table 2. A tabular representation of Figure 2.

Figure 2. For retainer times under ten minutes, a majority of
workers responded to the alert within two seconds and
three-quarters responded within three seconds. N=1442.

 30 sec 1 min 2 min 5 min 10 min 30 min
Median 1.77 s 1.77 s 1.91 s 2.18 s 3.34 s 10.32 s
3rd quartile 2.44 s 2.39 s 3.46 s 3.75 s — —
Completion 86.6% 87.2% 82.9% 75.1% 66.4% 49.4%

Table 1. A tabular representation of Figure 1.

Improving 10 minute
retainer response time

Studying Economic
Markets

Financial Incentives and the
“Performance of Crowds”
• Experiment with economic incentives on

Amazon Mechanical Turk
• Does compensation change the quantity

of work performed (output)?
• Does it change the quality of the work

(accuracy)?

$160k, and 3.2% reported an income greater than $160k. The
subject pool was therefore reasonably diverse, consistent with
previous user surveys of the AMT population—for example,
http://behind-the-enemy-lines.blogspot.com/2008/03/mechanical-
turk-demographics.html describes a similar income and gender

distribution, and also recorded 58% female respondents.

3.2 Results
Figure 2 reveals two main findings: first, that across all difficulty
levels participants chose to complete more tasks on average when
the pay was higher (F(3,607) = 15.73, p < 0.001); and second, that

across all payment levels, the number of completed tasks
decreased with increasing difficulty. We also observe, however,
that there is no interaction between difficulty and compensation,
thus hereafter we focus on the effect of pay on quantity averaged
over difficulty levels. In addition to the average effect of pay, we
also found that more of the participants paid $0.10 sorted the
maximum possible than those paid $0.01 or nothing at all, and
proportionately more of the participants paid $0.01 sorted fewer

than 10 sets. These results, in other words, are completely
consistent with standard economic theory, which predicts that the
more a person is paid to do X, the more of X they will do [7, 8].
Nevertheless, the finding is reassuring since, as noted above, one
might have expected that variability in intrinsic motivation (e.g.
enjoyment of the task) would have overwhelmed the effect of
changes in extrinsic motivation (payment), which can vary by at
most $0.10 per task. The strong and significant dependence of

output on compensation therefore suggests that the range of wage
rates studied ought to be sufficient to observe variability in the
quality of performance as well.

As Figure 3 indicates, however, increasing compensation did not
improve accuracy, which we measured in two ways: first, using
the proportion of image sets that were sorted into the correct
order; and second, using Spearman’s rank correlation (ρ), which is
the normalized sum of squared differences between the correct
order and the sorted order. For each accuracy measure, we
confirmed quantitatively what is visually apparent in Figure 3 in

two ways: first, using a simple one-way analysis of variance; and

second, fitting the data to a hierarchical linear model (where again
we averaged our results over the three difficulty levels). Although
the number of tasks each participant completed can only be
analyzed at the participant level, the measures of accuracy can
also be analyzed at the task level; thus, the hierarchical linear
model [23], also known as a multi-level model, is a useful

statistical model because it accounts for the variability in the
inherent difficulty of sorting each image set, and the variable
number of tasks each participant completed. In this analysis, the
compensation offered is treated as a categorical variable and
modeled as a random effect simultaneously with user-level effects
and task-level effects. Specifically, when accuracy is defined as

the probability Pr(yi = 1) that the image set i was sorted

correctly, the model is

Pr(yi = 1) = log it
−1(α t[i] + βt[i] ⋅ payi +ηu[i]) ,

and when accuracy is defined as Spearman’s rank correlation (ρ)

between the actual and correct ordering, the model is

€

ˆ ρ =α t[i] + β t[i] ⋅ payi +ηu[i]
,

where in both cases αt[i] is the intercept for each task, βt[i] is the

slope for the wage received, and ηu[i] ~ N(0,σ) is the intercept for
each user. The parameters α and η therefore capture variance
among different tasks and respondents respectively, and β
captures the effects of the wage rate.

 Model estimate β() 95% Confidence Interval

$0.00 0.059 (-0.055, 0.173)

$0.01 -0.124 (-0.220, -0.029)

$0.05 -0.057 (-0.154, 0.041)

$0.10 0.086 (-0.0044, 0.1775)

Table 1. Average parameter estimates for the effect of

pay in the hierarchical linear model across users.

.

Figure 3. Accuracy, defined as the proportion of image

sets correctly sorted, is not reliably different for

different wages; error bars are standard error.

Figure 2. Number of image sets sorted in Study 1 increases

with wage rate and decreases with difficult of task; error

bars are standard error.

.

Number of tasks done

$160k, and 3.2% reported an income greater than $160k. The
subject pool was therefore reasonably diverse, consistent with
previous user surveys of the AMT population—for example,
http://behind-the-enemy-lines.blogspot.com/2008/03/mechanical-
turk-demographics.html describes a similar income and gender

distribution, and also recorded 58% female respondents.

3.2 Results
Figure 2 reveals two main findings: first, that across all difficulty
levels participants chose to complete more tasks on average when
the pay was higher (F(3,607) = 15.73, p < 0.001); and second, that

across all payment levels, the number of completed tasks
decreased with increasing difficulty. We also observe, however,
that there is no interaction between difficulty and compensation,
thus hereafter we focus on the effect of pay on quantity averaged
over difficulty levels. In addition to the average effect of pay, we
also found that more of the participants paid $0.10 sorted the
maximum possible than those paid $0.01 or nothing at all, and
proportionately more of the participants paid $0.01 sorted fewer

than 10 sets. These results, in other words, are completely
consistent with standard economic theory, which predicts that the
more a person is paid to do X, the more of X they will do [7, 8].
Nevertheless, the finding is reassuring since, as noted above, one
might have expected that variability in intrinsic motivation (e.g.
enjoyment of the task) would have overwhelmed the effect of
changes in extrinsic motivation (payment), which can vary by at
most $0.10 per task. The strong and significant dependence of

output on compensation therefore suggests that the range of wage
rates studied ought to be sufficient to observe variability in the
quality of performance as well.

As Figure 3 indicates, however, increasing compensation did not
improve accuracy, which we measured in two ways: first, using
the proportion of image sets that were sorted into the correct
order; and second, using Spearman’s rank correlation (ρ), which is
the normalized sum of squared differences between the correct
order and the sorted order. For each accuracy measure, we
confirmed quantitatively what is visually apparent in Figure 3 in

two ways: first, using a simple one-way analysis of variance; and

second, fitting the data to a hierarchical linear model (where again
we averaged our results over the three difficulty levels). Although
the number of tasks each participant completed can only be
analyzed at the participant level, the measures of accuracy can
also be analyzed at the task level; thus, the hierarchical linear
model [23], also known as a multi-level model, is a useful

statistical model because it accounts for the variability in the
inherent difficulty of sorting each image set, and the variable
number of tasks each participant completed. In this analysis, the
compensation offered is treated as a categorical variable and
modeled as a random effect simultaneously with user-level effects
and task-level effects. Specifically, when accuracy is defined as

the probability Pr(yi = 1) that the image set i was sorted

correctly, the model is

Pr(yi = 1) = log it
−1(α t[i] + βt[i] ⋅ payi +ηu[i]) ,

and when accuracy is defined as Spearman’s rank correlation (ρ)

between the actual and correct ordering, the model is

€

ˆ ρ =α t[i] + β t[i] ⋅ payi +ηu[i]
,

where in both cases αt[i] is the intercept for each task, βt[i] is the

slope for the wage received, and ηu[i] ~ N(0,σ) is the intercept for
each user. The parameters α and η therefore capture variance
among different tasks and respondents respectively, and β
captures the effects of the wage rate.

 Model estimate β() 95% Confidence Interval

$0.00 0.059 (-0.055, 0.173)

$0.01 -0.124 (-0.220, -0.029)

$0.05 -0.057 (-0.154, 0.041)

$0.10 0.086 (-0.0044, 0.1775)

Table 1. Average parameter estimates for the effect of

pay in the hierarchical linear model across users.

.

Figure 3. Accuracy, defined as the proportion of image

sets correctly sorted, is not reliably different for

different wages; error bars are standard error.

Figure 2. Number of image sets sorted in Study 1 increases

with wage rate and decreases with difficult of task; error

bars are standard error.

.

Accuracy

Regardless of the accuracy measure or analytical method used, we
found that the wage rate had no significant effect on the
participants’ accuracy in sorting the image sets. First, as indicated
in Table 1, the parameter estimates in the hierarchical model for

the four levels of pay were not reliably different from each other;
and second, one-way ANOVAs of wage rate on proportion correct
and rank correlation were not statistically reliable (proportion
correct: F(3,607) = 0.66, ns; rank correlation: F(3,607) = 0.82, ns).

3.3 Discussion
One possible explanation for the absence of an effect of wages on

accuracy is that subjects simply assumed they would be paid
regardless of performance. This explanation is somewhat unlikely,
as AMT’s policy is that requestors are only obligated to pay for
accurate or useful work, and workers are informed of the policy.
Nevertheless, to check the possibility we ran an additional
experiment with a single payment level ($0.01) that provided
different information to participants regarding the importance of
accuracy. In this additional experiment, some participants were

given the same instructions as before while others were told that
one out of every four image sets was a test image set used to
gauge their accuracy. Within this latter condition, we also created
four variants: (i) participants only informed that accuracy would
be measured; (ii) participants also shown feedback on their
accuracy after every fourth image set; (iii) participants also told
explicitly that their pay would be contingent on their performance;
and (iv) participants shown feedback and also told that pay was

contingent. We found that quantity and quality results were
indistinguishable in all these conditions, suggesting that
participants in all conditions were in fact treating their pay as
performance dependent.

 Although the differential effect of pay on quantity and quality is
at first puzzling, we note that previous studies have also found
positive effects of financial incentives on quantity of work
performed but no effect on quality [24]. We hypothesize,

moreover, that the difference derives from an “anchoring” effect,

similar to effects that have been observed in other domains of
judgment and decision-making [19-21]. As Figure 4 shows, when
surveyed after the completion of their tasks, workers in all
conditions generally felt that the appropriate compensation for the
work they had just performed was greater than what they had

received, but the values they expressed depended significantly (χ2
= 243.61, p < 0.0001) on their actual compensation: on average,
workers paid $0.01 per task felt they should have received $0.05;
workers who were paid $0.05 felt they should have received
$0.08; and workers who were paid and $0.10 felt they should have
received $0.13. On the one hand, therefore, paying people more to
perform a task makes that task more attractive relative to their
available outside options, such as other HITs on AMT; thus

subjects in the higher pay conditions stayed longer and completed
more tasks than those in low pay condition. On the other hand,
because of the anchoring effect, all workers felt like they were
being paid less than they deserved; thus were no more motivated
to perform better no matter how much they were actually paid.

4. STUDY 2: WORD PUZZLES

4.1 Methods
In spite of this explanation, one might suspect that the absence of
an effect on accuracy may be an artifact of the task itself—
because, for example, it allowed only a small number of potential

solutions (in the “easy” condition, for example, only two solutions
were possible); or because subjects could not easily improve the
quality of their answers with greater effort. To address this
possibility, we performed another experiment, using a similar
experimental design, but changing the task to finding words
hidden in a random array of letters (see Figure 5).

4.1.1 Design
For each puzzle, we provided a list of words that might be found
in the puzzle, although only a subset of the list was actually
hidden in the word puzzle. As before, this task allowed us to
measure quantity (number of puzzles completed) and quality
(fraction of words found per puzzle) independently; but because

participants did not know how many words from the list could

Figure 4. Post-hoc survey shows perceived value of the

task increases with the actual pay, but is always slightly

greater than the actual pay received.

.

Figure 5. Screenshot of Study 2. Participants found

words hidden in a grid of letters.

.

Perceived Value

MTurk for social science
research

• Many social science experiments require
recruitment of a large number of subjects

• MTurk contains the major elements
required to conduct research:
• A participant compensation system
• A large pool of potential participants
• A streamlined process for study design,

participant recruitment, and data
collection

How Do MTurk Samples
Compare With Other Samples?

• MTurk population is more diverse than
college students (or non-students who
reside in college towns)

• Good gender splits
• Good minority representation
• Large number of non-US participants

Active versus Passive
Crowdsourcing

• In the first half of the semester we mainly
looked at active crowdsourcing, where
we explicitly solicit help from the crowd

• Many applications of crowdsourcing rely
on passive information collection from
multitudes of individual

The Best Questions on
a First Date

• You would like to learn about
your date, some important
things that you would like to
know are awkward to ask
directly

• Find questions that correlate
with what you want to know,
but which people are more
free about answering
publicly

% of long term couples that
agree on all 3 answers

chance agreement

What can you do with
Crowdsourcing?

• Crowdsourcing is a transformative idea
for business and research

• You all are exhibiting hugely creative
thinking about it with your final projects

• I am looking forward to seeing what you
come up with for the final, and beyond!

Final project details
• Wednesday, May 8th from noon-2pm in Wu and

Chen Auditorium (Levine 101)
• 5-7 minutes video for each team, plus 2 minute

Q&A
• You must provide links to your at least 1 hour

before the presentations begin, and validate that
they work.

• Final reports due on the 8th. Submit them before
9am.

Internship opportunities
• I am looking for 2-3 undergraduate

researcher assistants to work with me on
Crowdsourcing

• Paid summer internships in my lab
• Good experience if you’re thinking about

applying to grad schools
• Email me if you’re interested:

ccb@upenn.edu

mailto:ccb@upenn.edu

Thanks!

