NETS 213: CROWDSOURCING
AND HUMAN COMPUTATION

A ‘
_ “\)/ /\
~ A)\‘ "“‘

, N A - ‘\}‘ | S, = ot 72\ b

_ ' g < <7 X)
\,] ‘ (=" 1 = 5] / ;
“‘\ | V: S RS ‘v“_“:) 4 = -\ |

N (7 2, — Y

Professor Callison-Burch

@ Penn _
nomecrin
mgﬂ of PENNSYLVAI\%

Python

o Developed by Guido van Rossum in the early 90s
Originally Dutch, in USA since 1995.
Benevolent Dictator for Life (now retired)

o Named after the Monty Python comedy group
o Download from python.org

Some Positive Features of Python

o Fast development:
Concise, intuitive syntax

g NumPy
Whitespace delimited

G.arbage collected pa ndaS

o Portable: yit = B'Tit + pi + €
Programs run on major platforms without I.|||_|| MM

change -
Epython: common Python implementation in matp,t“b
o Various built-in types: PYT b RCH ?

i L . :
ists, dictionaries, sets: useful for Al TensorFlow

o Large collection of support libraries:
NumPy for Matlab like programming
Sklearn for machine learning
Pandas for data analysis

@ Penn Engineering

Recommended Reading

o Python Overview
The Official Python Tutorial ()
S(Iides for CIS192 :
o PEPs - Python Enhancement Proposals
- Official Style Guide for Python Code (Guido et al)
« Style is about consistency. 4 space indents, < 80 char lines
« Naming convention for functions and variables: lower_w_under
« Use the automatic pep8 checker!

o PEP 20 - The Zen of Python (Tim Peters) (try: import this)
Beautiful is better than ugly; simple is better than complex
There should be one obvious way to do it
That way may not be obvious at first unless you're Dutch
Readability counts

https://docs.python.org/3/tutorial/index.html
https://cis192.github.io/schedule/
http://pep8.org/

PEP 8 — the Style Guide for Python Code

This stylized presentation of the well-established PEP 8 was created by Kenneth Reitz (for humans).

Introduction

A Foolish Consistency is the
Hobgoblin of Little Minds

Code lay-out

¢ Indentation

* Tabs or Spaces?

* Maximum Line Length

* Should a line break before or after a
binary operator?

* Blank Lines

* Source File Encoding

¢ Imports

* Module level dunder names

String Quotes

Whitespace in Expressions and
Statements

¢ Pet Peeves
¢ Other Recommendations

When to use trailing commas
Comments

¢ Block Comments
¢ Inline Comments
* Documentation Strings

Naming Conventions

¢ QOverriding Principle

Introduction

This document gives coding conventions for the Python code comprising the standard
library in the main Python distribution. Please see the companion informational PEP
describing style guidelines for the C code in the C implementation of Python *.

This document and PEP 257 (Docstring Conventions) were adapted from Guido’s original

Python Style Guide essay, with some additions from Barry’s style guide 2.

This style guide evolves over time as additional conventions are identified and past

conventions are rendered obsolete by changes in the language itself.

Many projects have their own coding style guidelines. In the event of any conflicts, such
project-specific guides take precedence for that project.

A Foolish Consistency is the
Hobgoblin of Little Minds

One of Guido’s key insights is that code is read much more often than it is written. The
guidelines provided here are intended to improve the readability of code and make it
consistent across the wide spectrum of Python code. As PEP 20 says, “Readability counts”.

A ctula q111dA e shAatid ~Aancictancyu Cancictancg wnth #hic ctuvula 1iAdA e InmmnArda nd

Ralph Waldo Emerson

“A foolish consistency is the hobgoblin of little minds, adored by
little statesmen and philosophers and divines. With consistency
a great soul has simply nothing to do. He may as well concern
himself with his shadow on the wall. Speak what you think now
in hard words, and tomorrow speak what tomorrow thinks in
hard words again, though it contradict everything you said
today. —'Ah, so you shall be sure to be misunderstood.'— Is it
so bad, then, to be misunderstood? Pythagoras was
misunderstood, and Socrates, and Jesus, and Luther, and
Copernicus, and Galileo, and Newton, and every pure and wise
spirit that ever took flesh. To be great is to be misunderstood.”

Python REPL Environment

o REPL
Read-Evaluate-Print Loop
Type “python” at the terminal
Convenient for testing
If you'd like syntax highlighting in REPL try bpython

'cis521x@eniac:~> python3

Python 3.4.6 (default, Mar 22 2017, 12:26:13) [GCC] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello World!"')

Hello World!

>>> 'Hello World!'

'Hello World!'

>>> [2x1i for i in range(10)]

(6, 2, 4, 6, 8, 10, 12, 14, 16, 18]

>>> exit()

cis521x@eniac:~> [

https://bpython-interpreter.org/

Python Scripts

o Scripts
Create a file with your favorite text editor (like Sublime)
Type “python3 script_name.py” at the terminal to run
Not REPL, so you need to explicitly print

'cisb21xPeniac:~> cat foo.py

import random

def rand_fn():
"ioutputs list of 10 random floats between [0.0, 1.0)"""
return ["%.2f" % random.random() for i in range(10)]

print('1/2 = ', 1/2)
if __name__ == '__main__"':
rand_fn()

print(rand_fn())

‘'cisb21xPeniac:~> python3 foo.py

1/2 = 0.5

['9.08', '©.10', '0.84', '©.01', '0.00', '0.59', '0.67', '0.88', '0.58', '0.81']
cis521x@eniac:~> [

@;Phnnlﬁggneeﬁng

PyCharm IDE

3 djtp_first_steps = [2] polls ﬁ. dj, Django_test ¥

\]3 r:, models.py T:. admin.py

ject

(i

& !

create_question(="Past question." =-30) :

response = .client.get(reverse('polls:indav')) v W Django default
.assertQuerysetEqual(Search Everywhere: Include non-project items (Double ©¥) % v tables
response. context['latest_question_list' Q result\ E7 auth_group

['<Question: Past question.>'] o
) £ auth_group_permissions

- - 1 auth_permission
: ; . ; [[EMsView (polls.views, = -
test_index_view_with_a_future_question(e : ®) o] auth_user

[results.html E1 auth_user_groups

| 1:Pro
aseqereq [

« 7:Structure

auth_user_user_permissions

© result EH django_admin_log
create_question(="Future quest) | T id
response = .client.get(reverse('polls:i @ resutt
.assertContains(response, "No polls are @ result
=200)

result
.assertQuerysetEqual(response.context[’ o object_repr

© result -
action_flag

action_time
object_id

test_index_view_with_future_question_and_pa
change_message

content_type_id
user_id
Import Test Results ? <unnamed>
create_question(="Past questic... o
create_question(="Future question." =30)
response = .client.get(reverse('polls:index')) #FAKE_django_admin_log.
-assertQuerysetEqual(. django_admin_log_417f11
response.context['latest_question_list']
['<Question: Past question.>']

View Offline Inspection Results...

#FAKE_django_admin_log,

. django_admin_log_e8701
& django_content_type
EH django_migrations
dj
Debugger [Ej Console - T E

5| Frames == Variables 2.4 Watches

7

8] longMessage = False
8| maxDiff = 640

E MainThread v

<| test_index_view_with_a_future_questi(

7
&
<
7
)

fl reset_sequences = False
v
q

serialized_rollback = False
» = startTime = {datetime} 2015-10-09 11:38:35.521452

4:Run Y¢ 5: Debug € 6: TODO w5 Python Console _| Terminal 9 9: Version Control manage.py@first_steps &9; Event Log

% 2: Favorites

B

Tests Failed: 4 passed, 3 failed (4 minutes ago) !9 LF$ UTF-8% Git: masters

Python Notebooks o Iq b

o Jupyter Notebooks allow you to interactively run Python code in your °
web browser and share it with others in places like Google Colab OA

o They are popular for tutorials since you can include inline text and
images co) timbre_transfer.ipynb J u pyte r

: @ Share * m
File Edit View Insert Runtime Tools Help Lastedited on February 19
+ Code + Text 42 Copy to Drive Connect * Editin ~
|SE Table of contents X Py / 9

<> Copyright 2020 Google LLC.
DDSP Timbre Transfer Demo » Copyright 2020 Google LLC.
D Install and Import Licensed under the Apache License, Version 2.0 (the "License");

Record or Upload Audio L 1 cell hidden

Choose a model
Modify conditioning

~ DDSP Timbre Transfer Demo

Resynthesize Audio
Section This notebook is a demo of timbre transfer using DDSP (Differentiable Digital Signal Processing). The model here is trained to generate audio
conditioned on a time series of fundamental frequency and loudness.

e DDSP ICLR paper
¢ Audio Examples

By default, the notebook will download pre-trained models for Violin and Flute. You can train a model on your own sounds by using the Train

Autoencoder Colab.
Harmonic
—>| FO |—> 5
- Audio
Taget [OO Ay — ;
Audio i] | Reverb 1™ Audio
—>: z — Decoder : :—»
] ’m«w—
wmm ------ Filtered / H b
L, Noise
————————» Loudness 'M/'\nh’
\l Multi-Scale Spectrogram Loss |/

Structure of Python File

o Whitespace is meaningful in Python

o Use a newline to end a line of code.
Use \ when must go to next line prematurely.

o Block structure is indicated by indentation
The first line with less indentation is outside of the block.

The first line with more indentation starts a nested block.

Often a colon appears at the end of the line of a start of a new block.
(E.g. for function and class definitions.)

A Simple Code Sample

X = 34 - 23 # A comment.
y = '"Hello' # Another one.
z = 3.45
if z == 3.45 or y == 'Hello':
X =X + 1
y =y + ' World' # String concat.
print(x)
print(y)

Objects and Types

o All data treated as objects
An object is deleted (by garbage collection) once unreachable.

o Strong Typing

Every object has a fixed type, interpreter doesn't allow things incompatible with
that type (eg. “foo” + 2)

type(object)
isinstance(object, type)
o Examples of Types:
int, float
str, tuple, dict, list
bool: True, False
None, generator, function

Static vs Dynamic Typing

o Java: static typing
Variables can only refer to objects of a declared type
Methods use type signatures to enforce contracts
o Python: dynamic typing
Variables come into existence when first assigned.
>>> x = "foo”
>>> x = 2
type(var) automatically determined
If assigned again, type(var) is updated
Functions have no type signatures
Drawback: type errors are only caught at runtime

Math Basics

o Literals
Integers: 1, 2
Floats: 1.0, 2e10
Boolean: True, False
o Operations
Arithmetic: +-*/
Power: **
Modulus: %
Comparison: , <=, >=, ==, |=
Logic: (and, or, not) not symbols
o Assignment Operators
+=*= [= &= ...
No ++ or --

Strings

o Creation

Can use either single or double quotes
Triple quote for multiline string and docstring

o Concatenating strings
By separating string literals with whitespace
Special use of +

o Prefixing with r means raw.
No need to escape special characters: r'\n’

o String formatting
Special use of ‘%’ (as in printf in C)
print("%s can speak %d languages" % ("C3PQO", 6000000))

o Immutable

References and Mutability

>>> x ='foo ' >>>x=[1, 2, 3, 4]

>>>y =X >>>Yy =X

>>> x = x.strip() # new obj >>> x.append(5) #same obj
>>> X >>>y

>>>y s>

o strings are immutable

== checks whether variables pointto ~ ° lists are mutable

objects of the same value o usey = x[:] to get a (shallow) copy of
o is checks whether variables point to the ~ any sequence, ie. a new object of the
same object same value

Sequence types: Tuples, Lists, and Strings

& Penn Engineering

Sequence Types

o Tuple
A simple immutable ordered sequence of items

Immutable: a tuple cannot be modified once created
Items can be of mixed types, including collection types

o Strings
Immutable
Very much like a tuple with different syntax

Regular strings are Unicode and use 2-byte characters (Regular strings in
Python 2 use 8-bit characters)

o List
Mutable ordered sequence of items of mixed types

Sequence Types

o The three sequence types share much of the same syntax and functionality.
>>>tu = (23, 'abc’, 4.56, (2,3), 'def') # tuple

>>> |i = ['abc', 34, 4.34, 23] # list

>>> st = "Hello World"; st = 'Hello World' # strings

>>> tu[1] # Accessing second item in the tuple.

>>> tu[-3] #negative lookup from right, from -1

Slicing: Return Copy of a Subsequence

>>>t = (23, 'abc’, 4.56, (2,3), 'def')

>>> {[1:4] #slicing ends before last index
>>> [1:-1] #using negative index

>>> {[1:-1:2] # selection of every nth item.
>>> {[:2] # copy from beginning of sequence

>>> [2:] # copy to the very end of the sequence

Operations on Lists

>>>1i=[1,11, 3, 4, 5]
>>> |i.append(‘a’) # Note the method syntax
>>> |

>>> li.insert(2, 'i')
>>> |

>SS II — [Ial’ 'b', ICI, lbl]
>>> li.index('b') # index of first occurrence

>>> |i.count('b') # number of occurrences

>>> li.remove('b') # remove first occurrence
>>> |j

Operations on Lists 2

>>>1i=15, 2, 6, 8]
>>> li.reverse() # reverse the list *in place* (modify)
>>> |

>>> |i.sort() # sort the list *in place*
>>> |

>>> li.sort(some_function)
sort in place using user-defined comparison

>>> sorted(li) #return a *copy* sorted

Operations on Strings

>>> s = "Pretend this sentence makes sense."
>>> words = s.split(" ")

>>> words

['Pretend’, 'this’, 'sentence’, 'makes’, 'sense.’]
>>>" " join(words) #join method of obj " "

'Pretend_this _sentence makes_sense.’

>>> s ='dog’

>>> s.capitalize()
'Dog’

>>> s.upper()
'DOG’

>>> ' hi --".strip(" -
"hi’

https://docs.python.org/3.7/library/string.html

& Penn Engineering

https://docs.python.org/3.7/library/string.html

Tuples

>>> g = ["apple", "orange", "banana"]
>>> for (index, fruit) in enumerate(a):
print(str(index) + ": " + fruit)

0: apple
1: orange
2: banana

>>>a =1, 2, 3]

>>>pb =['a','b', 'c', 'd]
>>> |ist(zip(a, b))
[(1,'a"), (2, 'b’), (3, "c")]

>>> |ist(zip("foo", "bar"))
[(‘f', 'b"), (‘0', 'a"), ('0", 'r)]

>>> X, y, Z — |a|, lbl, ICI

& Penn Engineering

Dictionaries: a mapping collection type

@ Penn Engineering

Dict: Create, Access, Update

O Dictionaries are unordered & work by hashing, so keys must be immutable
O Constant average time add, lookup, update

>>>d = {'user': 'bozo’, 'pswd": 1234}

>>> d['user’]

>>> d['bozo']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'bozo’

>>> d['user'] = 'clown" # Assigning to an existing key replaces its value.

>>>(d

Dict: Useful Methods

>>>d = {'user':'bozo’, 'p":1234, i34}

>>> d.keys() # List of current keys
>>> d.values() # List of current values.
>>> d.items() # List of item tuples.

>>> from collections import defaultdict
>>> d = defaultdict(int)
>>> d['a']

o defaultdict automatically initializes nonexistent dictionary values

For Loops

& Penn Engineering

For Loops

o| for <item> in <collection>:

o If you've got an existing list, this iterates each item init.

o You can generate a list with Range:
list(range(5)) returns [0,1,2,3,4]

So we can say:.
for x in range(5):

o <item> can be more complex than a single variable name.
for (x, y) in [(‘a’,1), ('b",2), ('c',3), ('d",4)]:

[expression for name in list]
List Comprehensions replace loops!

nums =[0,1,2,3,4,5,6,7, 8, 9]
| want 'n*n' for each 'n’ in nums
squares =[]
for n in nums:
for n in nums:
squares.append(x*x)
print(squares)

squares = [x*x for x in nums]

print(squares)

[expression for name in list]
List Comprehensions replace loops!

>>>1i=[3,6, 2, 7]
>>> [clem * 2 for elem in li]
[6, 12, 4, 14]

>>> li = [("a", 1), ('b", 2), ('c', 7)]
>>> [~ 2 for (x, n) in li]
[3, 6, 21]

[expression for name in list if filter]
Filtered List Comprehensions

>>>1i=[3,6,2,7,1,9]
>>> [elem © 2 for elem in li if elem > 4]
[12, 14, 18]

o Only 6, 7, and 9 satisfy the filter condition.
o So,only 12, 14, and 18 are produced.

Dictionary, Set Comprehensions

Ist1 = [('a', 1), ('b's 2)! ('C', 'hl')]
Ist2 = ['x', 'a’, 6]

d = {k: v for k,v in Ist1}
s = {x for x in Ist2}

d = dict() # translation
for k, vin Ist1:
dik]=v
s = set() # translation
for x in Ist:
s.add(x)

Iterators

Iterator Objects

o Iterable objects can be used in a for loop because they have an __iter__ magic
method, which converts them to iterator objects:

>>>k = [1,2,3]

>>> k.__iter_ ()

>>> jter(k)

Iterators

o Iterators are objects with a __next__() method:
>>> j = iter(k)
>>> next(i)

>>>i.__next_ ()
>>> j.next()

>>> j.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
Stoplteration
o Python iterators do not have a hasnext() method!
o Just catch the Stoplteration exception

Iterators: The truth about for... in...

o for <item> in <iterable>:

o First line is just syntactic sugar for:
1. Initialize: Call <iterable>.__iter__ () to create an iterator

o Each iteration:
2. Call iterator.__next__() and bind <item>
2a. Catch Stoplteration exceptions

o To be iterable: has __iter _ method
which returns an iterator obj

o To be iterator: has _ next method
which throws Stoplteration when done

An Iterator Class

class Reverse:
"lterator for looping over a sequence backwards
def __init__ (self, data):
self.data = data
self.index = len(data)
def __next__(self):
if self.index ==
raise Stoplteration
self.index = self.index - 1
return self.data[self.index]

def __iter__(self):
return self

>>> for char in Reverse('spam’):
print(char)

nw'o s

Iterators use memory efficiently

Eg: File Objects
>>> for line in open(“script.py”): # returns iterator
print(line.upper())

instead of
>>> for line in open(“script.py”).readlines(): #returns list
print(line.upper())

Generators

YEILD

& Penn Engineering

Generators: using yield

o Generators are iterators (with __ next () method)

o Creating Generators: yield

Functions that contain the yield keyword automatically return a generator
when called

>>> def f£(n):
yield n
yield n+l

>>>
>>> type (f)

>>> type (£(5))

>>> [1i for 1 in £(6)]

Generators: What does yield do?

o Each time we call the _next method of the generator, the method runs until it
encounters a yield statement, and then it stops and returns the value that was
yielded. Next time, it resumes where it left off.

>>> gen = £(5) # no need to say £(5). iter ()
>>> gen
>>> gen. next ()

>>> next (gen)

>>> gen. next ()

Generators

o Benefits of using generators
Less code than writing a standard iterator
Maintains local state automatically
Values are computed one at a time, as they're needed
Avoids storing the entire sequence in memory
Good for aggregating (summing, counting) items. One pass.
Crucial for infinite sequences
Bad if you need to inspect the individual values

@ Penn Engineering

Import Modules and Files

>>> import math
>>> math.sqrt(9)

Not as good to do this:
>>> from math import *
>>> sqrt(9) # unclear where function defined

>>> import queue as Q
>>> g = Q.PriorityQueue ()
>>> qg.put(10)

>>> g.put(1l)

>>> g.put(5)

>>> while not g.empty() :

print q.get(),

& Penn Engineering

Import and pip

o pip isthe The Python Package Installer

o It allows you to install a huge range of external libraries that have been packaged
up and that are listed in the Python Package Index

o You run it from the command line;:
pip install package_name

o In Google Colab, you can run comm ine arguments in the Python notebook by
prefacing the commands with !

Ipip install nltk

& Penn Engineering

Defining Functions

Function definition begins with def£. Function name and its arguments.

_—

def get final answer (filename):

"""Documentation String"""
linel

line?2

return total counter

First line with less ‘return’ indicates the

indentation is considered to be value to be sent back to the caller.
outside of the function definition.

No declaration of types of arguments or result.

& Penn Engineering

Function overloading? No.

o Python doesn't allow function overloading like Java deos
Unlike Java, a Python function is specified by its name alone
Two different functions can't have the same name, even if they have different
numbers, order, or names of arguments

But operator overloading - overloading +, ==, -, etc. - is possible using special
methods on various classes

o There is partial support in Python 3, but | don’t recommend it
Python 3 - Function Overloading with singledispatch

https://www.blog.pythonlibrary.org/2016/02/23/python-3-function-overloading-with-singledispatch/

Default Values for Arguments

o You can provide default values for a function’s arguments
o These arguments are optional when the function is called
>>> def myfun (b, c=3, d="hello"):

return b + ¢
>>> myfun (5,3, "bob")
>>> myfun (5, 3)
>>> myfun (95)

o Non-default argument should always precede default arguments; otherwise, it
reports

Keyword Arguments

o Functions can be called with arguments out of order
o These arguments are specified in the call
o Keyword arguments can be used after all other arguments.

>>> def myfun(a, b, c):

return a - b

>>> myfun(2, 1, 43)

>>> myfun (c=43, b=1, a=2)
>>> myfun (2, c=43, b=1)
>>> myfun (a=2, b=3, 5)

*args

o Suppose you want to accept a variable number of non-keyword arguments to your
function.

def print everything(*args):
"""args is a tuple of arguments passed to the fn"""

for count, thing in enumerate (args):

print('{0}. {1}'.format(count, thing))

>>> 1st = ['a', 'b', 'c']
>>> print everything('a', 'b', 'c')

>>> print everything(*lst)

@ Penn Engineering

**kwargs

o Suppose you want to accept a variable number of keyword arguments to your
function.

def print keyword args (**kwargs) :
kwargs is a dict of the keyword args passed to the fn
for key, value in kwargs.items(): #.items() is list
print("%$s = %s" % (key, wvalue))
>>> kwargs = {'first name': 'Bobby', 'last name': 'Smith'}
>>> print keyword args (**kwargs)

>>> print keyword args(first name="John", last name="Doe")

Python uses dynamic scope

o Function sees the most current value of variables
>>> i = 10
>>> def add(x):

return x + 1

>>> add (5)

>>> i1 = 20
>>> add (5)

Default Arguments & Memoization

o Default parameter values are evaluated only when the de f statement they belong to is
first executed.

o The function uses the same default object each call

def fib(n, fibs={}): >>> fib (3)
if n in fibs:
print('n = %d exists' % n)
return fibs|[n]
if n <= 1:
fibs[n] = n # Changes fibs!'!
else:
fibs[n] = fib(n-1) + fib(n-2)

return fibs|[n]

Functions are “first-class” objects

o First class object

An entity that can be dynamically created, destroyed, passed to a function,
returned as a value, and have all the rights as other variables in the
programming language have

o Functions are “first-class citizens”
Pass functions as arguments to other functions
Return functions as the values from other functions
Assign functions to variables or store them in data structures

o Higher order functions: take functions as input

def compose (f, g, x): >>> compose (str, sum, [1, 2, 3])
return f (g(x))

Classgs anhd
Inheritance

ylia
Alligators and
Crocodiles

Turtles and
Tortoises

Amphisbaenia)
Snakes Worm Lzards Lizards

@ Penn Engineering

Creating a class

class Student: Called when an object
univ = "upenn" # class attribute is instantiated
def __init__ (self, name, dept): Every method begins

with the variable self
self.student_ name = name

self.student_dept = dept

def print_details(self): AnOtheFtrr]nedmber
print("Name: " + self.student_name) MeLno
print("Dept: " + self.student_dept)

Creating an instance,

student1 = Student("julie", "cis") note no self

student1.print_details()
Student.print_details(student1) Calling mthods of an
Student.univ object

Subclasses

o A class can extend the definition of another class

Allows use (or extension) of methods and attributes already defined in the
previous one.

New class: subclass. Original: parent, ancestor o1 superclass

o To define a subclass, put the name of the superclass in parentheses after the
subclass’'s name on the first line of the definition.

class (Student) :

o Python has no ‘extends’ keyword like Java.
o Multiple inheritance is supported.

Constructors: init

o Very similar to Java

o Commonly, the ancestor's init method is executed in addition to new
commands

o Must be done explicitly
o You'll often see something like thisinthe init method of subclasses:

parentClass. init (self, x, y)

where parentClass is the name of the parent’s class
Student. init (self, x, y)

Redefining Methods

o Very similar to over-riding methods in Java

o To redefine a method of the parent class, include a new definition using the same
name in the subclass.

The old code in the parent class won't get executed.

o To execute the method in the parent class in addition to new code for some
method, explicitly call the parent’s version of the method.

parentClass.methodName (self, a, b, c)

The only time you ever explicitly pass self as an argument is when
calling a method of an ancestor.

SO use myOwnSubClass.methodName (a,b, c)

Multiple Inheritance can be tricky

class A(object):
def foo(self):
print ('Foo!"')
class B(object):
def foo(self):
print ('Foo?"')
def bar (self) :
print ('Bar!"')

class C(A, B):
def foobar (self) :
super () .foo() # Foo!

super () .bar () # Bar!

Special Built-In
Methods and Attributes

Magic Methods and Duck Typing

o Magic Methods allow user-defined classes to behave like built in types

o Duck typing establishes suitability of an object by determining presence of methods
Does it swim like a duck and quack like a duck? It's a duck
Not to be confused with ‘rubber duck debugging’

@ Penn Engineering

Magic Methods and Duck Typing

class Duck:
def fly(self):
print("Duck flying")

class Airplane:
def fly(self):
print("Airplane flying")

class Whale:
def swim(self):
print("Whale swimming")

def 1lift off(entity):
entity.fly()

duck = Duck()
airplane = Airplane()
whale = Whale()

lift off(duck) # prints “Duck flying’

lift off(airplane) # prints “Airplane flying~
lift off(whale) # Throws the error "~ 'Whale' object has no attribute 'fly'"

Example Magic Method

class Student:

def (self, full name, age):
self.full name = full name
self.age = age

def (self) :
return "I'm named " + self.full name + " - age: " +
str (self.age)

>>> £ = Student("Bob Smith", 23)

>>> print(f)

Other “Magic” Methods

o Used to implement operator overloading
Most operators trigger a special method, dependent on class

init : The constructor for the class.

__len : Define how len(obj) works.

__copy___: Define how to copy a class.

__cmp___ : Define how == works for class.

__add___ : Define how + works for class

__neg__ : Define how unary negation works for class

o Other built-in methods allow you to give a class the ability to use [] notation like an
array or () notation like a function call.

Other Resources

Tons of good resources on YouTube

PYTHON

Fn COURSE

Python Tutorial - Python for Beginners [Full Course] - YouTube

YouTube - Programming with Mosh

https://www.youtube.com/watch?v=_uQrJ0TkZIc

